Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus Sonnenlicht und Wasser

31.10.2002


Amerikanischen Wissenschaftlern ist es gelungen, Wasserstoff direkt aus Sonnenlicht und Wasser herzustellen. Die Wissenschaftler der Duquesne-Universität in Pittsburgh verwendeten dazu einen Katalysator aus Titandioxid, der das Wasser unter Sonneneinstrahlung in seine Bestandteile Wasserstoff und Sauerstoff zerlegt. Dabei wurde ein Wirkungsgrad von 8,5 Prozent erreicht. Ab 10 Prozent könnte ein solches Verfahren wirtschaftlich arbeiten, schätzen Experten.



Auf der Suche nach einer günstigen Methode zur Wasserstoffgewinnung experimenieren Elektrochemiker bereits seit dreißig Jahren mit Titandioxid. Die metallische Verbindung ist billig herzustellen und wird bereits in vielen anderen Bereichen der Chemie eingesetzt. Wie alle Halbleiter kann Titandioxid Lichtteilchen – Photonen – aufnehmen. Dabei entstehen elektrische Ladungen, die Wasser in Wasserstoff und Sauerstoff zerlegen – wie in einer gewöhnlichen Elektrolysereaktion, bei der Plus- und Minuspol einer Spannungsquelle ins Wasser getaucht werden.



Bisherige Katalysatoren aus Titandioxid konnten für diese Reaktion allerdings nur die Energie des ultravioletten Anteils des Sonnenlichts nutzen. Nur rund ein Prozent der Sonnenenergie wird dabei in chemische Energie in Form von Wasserstoff umgesetzt. Ursache dieses schlechten Wirkungsgrads sind Verunreinigungen im Katalysatormaterial, die bei der Herstellung von Titandioxid aus Titan entstehen, fanden die Wissenschaftler um den Chemiker Shahed Khan heraus.

Auf der Suche nach besseren Herstellungsverfahren entwickelten die Forscher eine Art Brennofen und "rösteten" das Metall in einer Erdgasflamme bei Temperaturen von 850 Grad Celsius zu Titandioxid. Da bei der Verbrennung von Erdgas mit seinem Hauptbestandteil Methan Kohlendioxid frei wird, fanden sich in dem entstehenden Material Spuren von Kohlenstoff.

Zu ihrer Verwunderung stellten die Wissenschaftler fest, dass diese Art von Verunreinigung geradezu Wunder wirkte: Das Titandioxid konnte jetzt nicht nur ultraviolettes Licht absorbieren, sondern auch Licht größerer Wellenlängen. Der Wirkungsgrad schnellte auf das achtfache und damit auf rund 8,5 Prozent nach oben.

Für einen wirtschaftlichen Betrieb müsste eine Effizienz von mindestens 10 Prozent erreicht werden, haben Experten der US-amerikanischen Energiebehörde ausgerechnet. Khan und sein Team sind zuversichtlich, diese Schallmauer mit einem verbesserten Verfahren durchbrechen zu können. Ein höherer Anteil Kohlenstoff im Katalysatormaterial wird das entscheidene Plus bringen, so Khan.

Ulrich Dewald | InItiative Brennstoffzelle

Weitere Berichte zu: Sonnenlicht Titandioxid Verunreinigung Wasserstoff

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie