Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beim Laden von Lithium-Luft-Akkus entsteht hochreaktiver Singulett-Sauerstoff

04.05.2016

Lithium-Luft-Akkus gelten als Zukunftstechnologie: Theoretisch können sie nicht nur wesentlich leistungsfähiger sein als die derzeit gängigen Lithium-Ionen-Akkus, sondern auch leichter. Noch sind die neuen Energiespeicher allerdings nicht reif für die Praxis – schon nach wenigen Ladezyklen machen die Akkus schlapp. Woran das liegt, haben jetzt Wissenschaftler der Technischen Universität München (TUM) und des Forschungszentrums Jülich untersucht und einen potenziellen Übeltäter entdeckt: Hochreaktiven Singulett-Sauerstoff, der beim Laden des Akkus frei wird.

Eine Schlankheitskur wäre dringend nötig: Mobiltelefone beulen nach wie vor die Jackentaschen aus, und der Transport von portablen Computern führt zu Verspannungen der Schultermuskulatur. Schuld daran sind vor allem die Energiespeicher: Die heute gängigen Lithium-Ionen-Akkus enthalten schwere Elektroden aus Übergangsmetalloxiden.


Erstautor Johannes Wandt mit dem von ihm gebauten Messröhrchen für die Elektronenspinresonanz-Versuche

Bild: Andreas Battenberg / TUM

Leichtgewichtige Alternativen sind daher gefragt. „Einer der vielversprechendsten Ansätze ist der Lithium-Luft-Akku, bei dem die Lithiumkobaltoxid-Kathode durch poröse Kohlenstoffpartikel ersetzt wird“, erklärt Johannes Wandt, Doktorand im Team von Prof. Hubert Gasteiger am Lehrstuhl für Technische Elektrochemie der TUM.

„Die theoretische Energiedichte dieser neuen Akkus ist deutlich höher als die traditioneller Lithium-Ionen-Akkumulatoren.“ Die Technik sei bisher allerdings nicht praxistauglich, weil die Lithium-Luft-Akkus nur eine sehr kurze Lebenszeit haben: Schon nach wenigen Ladezyklen ist die Kohlenstoff Elektrode korrodiert und die Elektrolyt-Flüssigkeit zersetzt sich. „Das Problem ist, dass bisher niemand genau wusste, woran das liegt“, so Wandt.

Das Geheimnis des kurzen Akku-Lebens

Zusammen mit seinen Teamkollegen ist es ihm jetzt gelungen, das Rätsel zu lösen. In einem Experiment, das die Münchner Wissenschaftler zusammen mit Experten vom Forschungszentrum Jülich durchgeführt haben, wurde ein potenzieller Übeltäter, der Elektroden und Elektrolyt-Flüssigkeit angreift, gestellt: Beim Aufladen des Akkus entsteht Singulett-Sauerstoff. Dieser ist extrem reaktionsfreudig. Innerhalb von Sekundenbruchteilen korrodiert er umgebende Materialien.

Der Verdacht, dass Singulett-Sauerstoff den Akku schädigt, ist nicht ganz neu. Doch erst jetzt konnten die Forscher den hochreaktiven Stoff nachweisen. Warum es so lange gedauert hat? „Man hat einfach nicht danach gesucht“, vermutet TUM-Forscher Johannes Wandt: Auf Grund eines Rechenfehlers sei die Forscher-Community fälschlicherweise davon ausgegangen, dass die Reaktion erst bei höheren Spannungen auftrete. Dazu komme ein ziemlich komplizierter Versuchsaufbau.

Zwei Jahre Tüftelarbeit

Um den Ladevorgang genauer untersuchen zu können, bauten die TUM-Forscher einen speziellen Lithium-Luft-Akku. Die Stromabnehmer sind dünn und in Form einer Helix angeordnet, ein Glasgehäuse sorgt für Transparenz. So ist sichergestellt, dass die für die Messung wichtigen Mikrowellenstrahlen und Magnetfelder nicht abgeschirmt werden.

„Außerdem haben wir der Elektrolytflüssigkeit Moleküle beigemengt, die den kurzlebigen Singulett-Sauerstoff einfangen und als stabiles Radikal an sich binden“, berichtet Wandt. „In einem speziellen Messgerät für Elektronen-Paramagnetische-Resonanz Spektroskopie, kurz EPR, in Jülich ist es auf diese Weise gelungen, die Bildung von Singulett-Sauerstoff während des Ladens nachzuweisen.“

Das Problem ist damit erkannt, wenn auch nicht gebannt. Als nächstes wollen die Forscher nun herausfinden, wie sich die Entstehung von Singulett-Sauerstoff beim Laden verhindern lässt. „Diese Grundlagenforschung könnte die Voraussetzung schaffen für die Entwicklung neuer, langlebigerer Lithium-Luft-Akkus“, hofft Wandt.

Die Arbeiten wurden unterstützt durch Mittel des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmen des Projekts „Materialien und Komponenten für Batterien mit hoher Energiedichte“ (MEET-HiEnD) sowie des Bayerischen Ministeriums für Wirtschaft und Medien, Energie und Technologie im Rahmen des Projekts EEBatt. Das Projekt EEBatt ist Teil des Forschungsschwerpunkts TUM.Energy der Munich School of Engineering.

Publikation:

Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery; Johannes Wandt, Peter Jakes, Josef Granwehr, Hubert A. Gasteiger, Rüdiger-A. Eichel; Angewandte Chemie, Intl. Ed., 26.04.2016 – DOI: 10.1002/ange.201602142
Link: http://onlinelibrary.wiley.com/doi/10.1002/ange.201602142/abstract

Kontakt:

Prof. Dr. Hubert Gasteiger
Lehrstuhl für Technische Elektrochemie
Technische Universität München
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289-13679 - E-Mail: hubert.gasteiger@tum.de
Web: http://www.tec.ch.tum.de

Johannes Wandt, Tel.: +49 89 289 13485
E-Mail: Johannes.wandt@tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise