Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Automatische Selbstoptimierung für Windturbinen

12.03.2014

Siemens bringt Windturbinen bei, ihren Betrieb automatisch und möglichst optimal an die Wetterverhältnisse anzupassen.

Die Anlage lernt aus vorhandenen Sensordaten wie beispielsweise der Windstärke, selbständig ihre Einstellgrößen so zu verändern, dass sie die bestehenden Verhältnisse bestmöglich nutzt. Gerade bei niedrigen und mittleren Windstärken liefern Windenergieanlagen nicht immer die maximal mögliche Strommenge.


Spezialisten für Lernende Systeme der globalen Siemens-Forschung Corporate Technology (CT) entwickelten dieses Selbstoptimierungs-Verfahren für Windturbinen in dem vom Bundesforschungsministerium geförderten Projekt ALICE (Autonomous Learning in Complex Environments) zusammen mit der TU Berlin und der IdaLab GmbH.

Vom 10. bis 14. März stellen die Forscher ihre Arbeit auf der CeBIT in Hannover vor. Damit kann eine Anlage bei mittleren Windgeschwindigkeiten im Jahr etwa ein Prozent mehr Strom erzeugen und gleichzeitig ihren Verschleiß reduzieren.

Die Forscher zeigen an einem Demonstrator, wie eine Windturbine ihre Betriebsdaten nutzt und schritt­weise ihre Stromproduktion steigert. Dazu verknüpfen sie so genanntes Reinforcement Lernen mit speziellen Neuronalen Netzen. Neuronale Netze sind eine Software, die ähnlich arbeitet wie ein menschliches Gehirn.

Siemens CT entwickelt seit vielen Jahren Neuronale Netze, um das Verhalten von hochkomplexen Systemen - das können Windparks, Gasturbinen, Fabrikanlagen oder auch Börsenmärkte sein - zu modellieren und prognostizieren.

Die Programme lernen anhand von Daten aus der Vergangenheit und können dann zum Beispiel Prognosen für das zukünftige Verhalten eines Systems abgeben. So lässt sich auch ein Modell erstellen, das die Stromproduktion einer Windturbine bei bestimmten Wetterdaten vorhersagt.

Um nun die Effizienz der Windturbine mit Hilfe ihrer Stellgrößen - beispielsweise der Drehzahl der Windturbine - zu verbessern, identifizierten die Forscher aus einer hohen Anzahl sehr verrauschter Daten aussagekräftige Merkmale. Mittels patentierter Neuronaler Netze entstand daraus eine sogenannte Reinforcement Learning Policy.

Für das Ziel einer hohen Stromausbeute erlernt das System, die Einstellungen der Windturbine so zu verändern, dass es in der jeweiligen Situation immer die maximale Strommenge erzielt. Schon nach wenigen Wochen kennt es die optimalen Stellgrößen für häufig auftretende Zustände.

Nach längeren Datenzeiträumen meistert es auch seltene Situationen wie etwa außergewöhnliche Wetterlagen. Vergangenes Jahr wurde die Technik in einem spanischen Windpark erfolgreich erprobt. 

Mit einer fortwährenden Erkundung um lohnende Betriebspunkte kann ein System iterativ immer besser werden. Da die Methoden gut übertragbar sind, können so auch weitere Siemens Produkte lernen, sich zu optimieren. 

Weitere Informationen:

http://www.siemens.de/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein
20.09.2017 | Technische Universität Hamburg-Harburg

nachricht Strom im Flug erzeugen
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik