Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antimon-Nanokristalle für Batterien

18.03.2014

Forscherinnen und Forscher der Empa und der ETH Zürich haben erstmals einheitliche Antimon-Nanokristalle erzeugt. In Tests mit Laborbatterien können diese nicht nur sehr viele Lithium-, sondern auch Natriumionen speichern. Die Nanokristalle wären deshalb eine viel versprechende Alternative für künftige Elektrodenmaterialien in Batterien mit hoher Ladekapazität.

Die Jagd ist eröffnet. Und zwar auf neue Materialien für die nächste Generation von Batterien, die eines Tages Lithiumionen-Akkus ersetzen sollen. Diese liefern heutzutage für Smartphones, Laptops und viele weitere tragbare elektronische Geräte zuverlässig Strom.


Antimon Nanokristall

Doch die Elektromobilität und stationäre Energiespeicher verlangen nach mehr und leistungsfähigeren Batterien, und die damit einhergehende hohe Nachfrage nach Lithium könnte zu einem Engpass bei diesem Rohstoff führen.

Gefordert sind deshalb Batterien, die konzeptionell mit Lithiumionen-Batterien identisch sind, aber auf Natriumionen basieren. Obwohl darüber bereits seit 20 Jahren geforscht wird, sind Materialien, die Natriumionen effizient speichern können, nach wie vor Mangelware.

Elektroden aus Antimon?

Auf der Suche nach alternativen Batteriematerialien ist das Team unter der Leitung von Empa-Forscher Maksym Kovalenko nun möglicherweise einen Schritt weitergekommen: Sie haben es als erste geschafft, gleichmässige Antimon-Nanokristalle zu synthetisieren. Diese bieten sich aufgrund ihrer besonderen Eigenschaften als Anodenmaterial an, und zwar sowohl für Lithium- als auch für Natriumionen. Die Resultate ihrer Studie wurden soeben in der Fachzeitschrift «Nano Letters» veröffentlicht.

Antimon galt schon lange als viel versprechendes Anodenmaterial für leistungsfähige Lithiumionen-Batterien, da dieses Halbmetall eine doppelt so hohe Ladekapazität wie das derzeit verwendete Graphit aufweist. Erste Studien zeigten dann auch, dass sich Antimon für wieder aufladbare Natrium- und Lithiumionen-Batterien eignen könnte, weil es beide Arten von Ionen speichern kann. Natrium ist eine mögliche günstigere Alternative zu Lithium, da es viel häufiger vorkommt und gleichmässiger auf der Erde verteilt ist.

Damit Antimon seine hohe Speicherfähigkeit auch «ausspielt», muss es indes in eine spezielle Form gebracht werden. Kovalenkos Team hat eine Methode entwickelt, um gleichmässige, monodisperse Antimon-Nanokristalle mit einer Grösse zwischen 10 und 20 Nanometer zu synthetisieren.

Nanokristalle haben gegenüber grösseren Kristallen entscheidende Vorteile. Antimon ist beim Laden und Entladen der Ionen grossen Volumenveränderungen unterworfen. Bei Nanokristallen sind diese Volumenveränderungen reversibel und laufen schnell ab. «Normales» Antimon würde dabei hingegen brüchig. Ein weiterer wichtiger Vorteil: Antimon-Nanopartikel können mit leitfähigem Kohlenstoff-Füllmaterial vermischt werden. Das verhindert ein Verklumpen der Nanoteilchen.

Wunschkandidat für Anodenmaterial

Erste Labortests zeigten, dass Elektroden aus Antimon-Nanokristallen eine gleich hohe Leistung für beiden Ionenarten besitzen. Damit sind Antimon-Nanoteilchen besonders für den Einsatz in Natriumionen-Batterien geeignet, weil die derzeit besten Lithiumspeicher – Graphit und Silizium – mit Natrium nicht funktionieren.

Hochgradig gleichmässige Nanokristalle – nur gerade 10 Prozent oder weniger weichen in ihrer Grösse von der Durchschnittsgrösse der Partikel ab – erlaubten es den Forscher auch, das beste Verhältnis von Grösse zu Leistung zu ermitteln. Die höchste Leistung bieten Antimon-Nanokristalle von 20 Nanometer Grösse, fanden die Forscher heraus. Sind die Teilchen 10 Nanometer oder kleiner, wird das Verhältnis von Volumen zu Oberfläche ungünstig, und sie oxidieren rasch. Kristalle, die grösser als 100 Nanometer sind, werden hingegen durch die Volumenänderungen beim Laden und Entladen zerstört.

Eine weitere Erkenntnis ist, dass es für eine hohe Leistung gar nicht so sehr darauf ankomme, ultrauniforme Nanoteilchen in einer Elektrode einzusetzen. Die Forschenden fanden nämlich heraus, dass die Partikel zwischen 20 und 100 Nanometern gross sein können, ohne dass die Energiedichte oder die Entlade- und Laderaten darunter leiden. Antimon sei relativ «gutmütig», so Kovalenko. Andere Materialien, die die Chemiker untersuchten, sind diesbezüglich weniger tolerant. Steigt deren Partikelgrösse an, fallen die Leistungsparameter stark ab.

Teurere Alternative

Rückt damit eine Alternative zu heutigen Lithiumionen-Akkus in Griffweite? Kovalenko winkt ab. Noch ist die Herstellung einheitlicher Antimon-Nanokristalle in ausreichender Menge und Qualität zu teuer – obwohl das Verfahren an sich relativ einfach ist. «Insgesamt sind Batterien mit Natriumionen und Antimon-Nanokristallen als Anodenmaterial nur dann eine viel versprechende Alternative zu heutigen Lithiumionen-Akkus, wenn die Kosten für die Batterieherstellung und die Leistung des Stromspeichers vergleichbar sind», sagt Kovalenko.

Zurzeit arbeitet Kovalenkos Team zusammen mit einem Industriepartner daran, eine günstigere Synthesemethode zu finden. Bis eine Natriumionen-Batterie mit Antimonelektrode auf den Markt kommen könnte, dürfte es wohl noch mindestens zehn Jahre dauern, schätzt Kovalenko. Die Forschung dazu stehe erst am Anfang. «Aber andere Forschungsgruppen werden bald auf den Zug aufspringen», ist Kovalenko überzeugt.

BOX: Lithiumionen-Batterien

Eine heutige Lithiumionen-Batterie besteht aus zwei Elektroden – einer Kathode und einer Anode. Die Anode besteht oft aus Graphit, die Kathode aus Metalloxiden wie Kobaltoxid. In diese Materialien nisten sich die Lithiumionen beim Laden oder Entladen ein. Die beiden Elektroden sind durch eine Trennwand getrennt, die nur Lithiumionen durchlässt. Beim Entladen bewegen sich die Lithiumionen von der Anode zur Kathode. Die dabei frei werdenden Elektronen fliessen über den externen Stromkreis ebenfalls zur Kathode und treiben dadurch ein elektrisches Gerät an. Elektronen und Ionen treffen sich in der Kathode wieder. Beim Laden fliessen Ionen und Elektronen in die umgekehrte Richtung. Damit eine Batterie gut und lange funktioniert, müssen sich die Ionen gut in die Elektrodenmaterialien hinein und aus diesen heraus bewegen können. Auch sollten sich Form und Grösse des Elektrodenmaterials durch die wiederkehrende Aufnahme und Abgabe der Ionen nicht wesentlich verändern.

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/145491/---/l=1

Cornelia Zogg | EMPA

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie