Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antimon-Nanokristalle für Batterien

18.03.2014

Forscherinnen und Forscher der Empa und der ETH Zürich haben erstmals einheitliche Antimon-Nanokristalle erzeugt. In Tests mit Laborbatterien können diese nicht nur sehr viele Lithium-, sondern auch Natriumionen speichern. Die Nanokristalle wären deshalb eine viel versprechende Alternative für künftige Elektrodenmaterialien in Batterien mit hoher Ladekapazität.

Die Jagd ist eröffnet. Und zwar auf neue Materialien für die nächste Generation von Batterien, die eines Tages Lithiumionen-Akkus ersetzen sollen. Diese liefern heutzutage für Smartphones, Laptops und viele weitere tragbare elektronische Geräte zuverlässig Strom.


Antimon Nanokristall

Doch die Elektromobilität und stationäre Energiespeicher verlangen nach mehr und leistungsfähigeren Batterien, und die damit einhergehende hohe Nachfrage nach Lithium könnte zu einem Engpass bei diesem Rohstoff führen.

Gefordert sind deshalb Batterien, die konzeptionell mit Lithiumionen-Batterien identisch sind, aber auf Natriumionen basieren. Obwohl darüber bereits seit 20 Jahren geforscht wird, sind Materialien, die Natriumionen effizient speichern können, nach wie vor Mangelware.

Elektroden aus Antimon?

Auf der Suche nach alternativen Batteriematerialien ist das Team unter der Leitung von Empa-Forscher Maksym Kovalenko nun möglicherweise einen Schritt weitergekommen: Sie haben es als erste geschafft, gleichmässige Antimon-Nanokristalle zu synthetisieren. Diese bieten sich aufgrund ihrer besonderen Eigenschaften als Anodenmaterial an, und zwar sowohl für Lithium- als auch für Natriumionen. Die Resultate ihrer Studie wurden soeben in der Fachzeitschrift «Nano Letters» veröffentlicht.

Antimon galt schon lange als viel versprechendes Anodenmaterial für leistungsfähige Lithiumionen-Batterien, da dieses Halbmetall eine doppelt so hohe Ladekapazität wie das derzeit verwendete Graphit aufweist. Erste Studien zeigten dann auch, dass sich Antimon für wieder aufladbare Natrium- und Lithiumionen-Batterien eignen könnte, weil es beide Arten von Ionen speichern kann. Natrium ist eine mögliche günstigere Alternative zu Lithium, da es viel häufiger vorkommt und gleichmässiger auf der Erde verteilt ist.

Damit Antimon seine hohe Speicherfähigkeit auch «ausspielt», muss es indes in eine spezielle Form gebracht werden. Kovalenkos Team hat eine Methode entwickelt, um gleichmässige, monodisperse Antimon-Nanokristalle mit einer Grösse zwischen 10 und 20 Nanometer zu synthetisieren.

Nanokristalle haben gegenüber grösseren Kristallen entscheidende Vorteile. Antimon ist beim Laden und Entladen der Ionen grossen Volumenveränderungen unterworfen. Bei Nanokristallen sind diese Volumenveränderungen reversibel und laufen schnell ab. «Normales» Antimon würde dabei hingegen brüchig. Ein weiterer wichtiger Vorteil: Antimon-Nanopartikel können mit leitfähigem Kohlenstoff-Füllmaterial vermischt werden. Das verhindert ein Verklumpen der Nanoteilchen.

Wunschkandidat für Anodenmaterial

Erste Labortests zeigten, dass Elektroden aus Antimon-Nanokristallen eine gleich hohe Leistung für beiden Ionenarten besitzen. Damit sind Antimon-Nanoteilchen besonders für den Einsatz in Natriumionen-Batterien geeignet, weil die derzeit besten Lithiumspeicher – Graphit und Silizium – mit Natrium nicht funktionieren.

Hochgradig gleichmässige Nanokristalle – nur gerade 10 Prozent oder weniger weichen in ihrer Grösse von der Durchschnittsgrösse der Partikel ab – erlaubten es den Forscher auch, das beste Verhältnis von Grösse zu Leistung zu ermitteln. Die höchste Leistung bieten Antimon-Nanokristalle von 20 Nanometer Grösse, fanden die Forscher heraus. Sind die Teilchen 10 Nanometer oder kleiner, wird das Verhältnis von Volumen zu Oberfläche ungünstig, und sie oxidieren rasch. Kristalle, die grösser als 100 Nanometer sind, werden hingegen durch die Volumenänderungen beim Laden und Entladen zerstört.

Eine weitere Erkenntnis ist, dass es für eine hohe Leistung gar nicht so sehr darauf ankomme, ultrauniforme Nanoteilchen in einer Elektrode einzusetzen. Die Forschenden fanden nämlich heraus, dass die Partikel zwischen 20 und 100 Nanometern gross sein können, ohne dass die Energiedichte oder die Entlade- und Laderaten darunter leiden. Antimon sei relativ «gutmütig», so Kovalenko. Andere Materialien, die die Chemiker untersuchten, sind diesbezüglich weniger tolerant. Steigt deren Partikelgrösse an, fallen die Leistungsparameter stark ab.

Teurere Alternative

Rückt damit eine Alternative zu heutigen Lithiumionen-Akkus in Griffweite? Kovalenko winkt ab. Noch ist die Herstellung einheitlicher Antimon-Nanokristalle in ausreichender Menge und Qualität zu teuer – obwohl das Verfahren an sich relativ einfach ist. «Insgesamt sind Batterien mit Natriumionen und Antimon-Nanokristallen als Anodenmaterial nur dann eine viel versprechende Alternative zu heutigen Lithiumionen-Akkus, wenn die Kosten für die Batterieherstellung und die Leistung des Stromspeichers vergleichbar sind», sagt Kovalenko.

Zurzeit arbeitet Kovalenkos Team zusammen mit einem Industriepartner daran, eine günstigere Synthesemethode zu finden. Bis eine Natriumionen-Batterie mit Antimonelektrode auf den Markt kommen könnte, dürfte es wohl noch mindestens zehn Jahre dauern, schätzt Kovalenko. Die Forschung dazu stehe erst am Anfang. «Aber andere Forschungsgruppen werden bald auf den Zug aufspringen», ist Kovalenko überzeugt.

BOX: Lithiumionen-Batterien

Eine heutige Lithiumionen-Batterie besteht aus zwei Elektroden – einer Kathode und einer Anode. Die Anode besteht oft aus Graphit, die Kathode aus Metalloxiden wie Kobaltoxid. In diese Materialien nisten sich die Lithiumionen beim Laden oder Entladen ein. Die beiden Elektroden sind durch eine Trennwand getrennt, die nur Lithiumionen durchlässt. Beim Entladen bewegen sich die Lithiumionen von der Anode zur Kathode. Die dabei frei werdenden Elektronen fliessen über den externen Stromkreis ebenfalls zur Kathode und treiben dadurch ein elektrisches Gerät an. Elektronen und Ionen treffen sich in der Kathode wieder. Beim Laden fliessen Ionen und Elektronen in die umgekehrte Richtung. Damit eine Batterie gut und lange funktioniert, müssen sich die Ionen gut in die Elektrodenmaterialien hinein und aus diesen heraus bewegen können. Auch sollten sich Form und Grösse des Elektrodenmaterials durch die wiederkehrende Aufnahme und Abgabe der Ionen nicht wesentlich verändern.

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/145491/---/l=1

Cornelia Zogg | EMPA

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie