Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ames Laboratory scientists develop indium-free organic light-emitting diodes

04.12.2012
Scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory have discovered new ways of using a well-known polymer in organic light emitting diodes (OLEDs), which could eliminate the need for an increasingly problematic and breakable metal-oxide used in screen displays in computers, televisions, and cell phones.

The metal-oxide, indium tin oxide (ITO), is a transparent conductor used as the anode for flat screen displays, and has been the standard for decades. Due to indium's limited supply, increasing cost and the increasing demand for its use in screen and lighting technologies, the U.S. Department of Energy has designated indium as "near-critical" in its assessment of materials vital to clean energy technology. Scientists have been working to find an energy efficient, cost effective substitute.

“There are not many materials that are both transparent and electrically conductive,” said Joseph Shinar, an Ames Laboratory Senior Scientist. “One hundred percent of commercial display devices in the world use ITO as the transparent conducting electrode. There’s been a big push for many years to find alternatives.”

“Everybody is trying to find a replacement for ITO, many working with zinc oxide, another metal oxide. But here we are working towards something different, developing ways to use a conducting polymer,” said Min Cai, a post-doctoral research scientist in the Ames Laboratory and the Dept. of Physics and Astronomy at Iowa State University.

The polymer’s name is a mouthful of a word: poly (3,4-ethylene dioxythiophene):poly(styrene sulfonate), known as PEDOT:PSS for short, and has been around for about 15 years. Until recently, the material wasn’t sufficiently conductive or transparent enough to be a viable ITO substitute, Shinar said. But by using a multi-layering technique and special treatments, Cai and his fellow scientists were able to fabricate PEDOT:PSS OLEDs with vastly improved properties.

“Compared to an ITO anode device, the PEDOT:PSS device is at least 44 percent more efficient,” said Cai. According to Joe

Shinar, that gain in efficiency over ITO-based technology is the highest yet recorded.

The researchers used computer simulations to show that the enhanced performance is largely an effect of the difference in the optical properties between the polymer- and ITO-based devices.

Another key property of PEDOT:PSS is flexibility; using ITO in OLEDs defeats one of OLED’s big pluses compared to conventional LED technology.

“OLEDs can be made on a flexible substrate, which is one of their principal advantages over LEDs. But ITO is ceramic in nature; it is brittle rather than flexible,” said Ruth Shinar, a Senior Scientist at Iowa State University’s Microelectronics Research Center.

The findings, co-authored by Joseph Shinar and Ruth Shinar along with Min Cai, Zhuo Ye, Teng Xiao, Rui Liu, Ying Chen, Robert W. Mayer, Rana Biswas, and Kai-Ming Ho, were recently published in Advanced Materials, one of the most prominent journals in materials science and engineering.

The research builds on continuing work to find more affordable and efficient manufacturing materials and processes for OLED manufacturing. An earlier paper published in Advanced Materials by Joseph Shinar and Ruth Shinar along with Min Cai , Teng Xiao , Emily Hellerich , and Ying Chen demonstrated the use of solution processing for small molecule-based OLEDs, which are typically constructed using a more expensive thermal evaporation deposition process.

The scientists’ ongoing investigations into better materials and processes pave the way to more cost-efficient manufacturing and making OLED technology more widely available to consumers.

Joseph Shinar said that OLED televisions were already available to a limited high-end consumer, and that prices would come down as major manufacturers perfected their production processes. Both Samsung and LG exhibited a 55-inch OLED TV as a highlight feature of the 2012 Consumer Electronics Show in Las Vegas in January.

“We are already getting there with OLED televisions. Consumers will see them getting more affordable and more widely available in the very near future,” said Joseph Shinar.

Shinar said the technology was also beginning to be used in lighting, in applications where diffuse light is preferred instead of point source lighting, and in architectural and art design.
The research is supported by the U.S. Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

Laura Millsaps | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Power and Electrical Engineering:

nachricht From allergens to anodes: Pollen derived battery electrodes
08.02.2016 | Purdue University

nachricht Clean Energy From Water
08.02.2016 | Universität Basel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: "Footware Innovation" – Digitale Techniken für individuelles Schuhwerk

Sieben mittelständische Unternehmen des Orthopädiefachhandwerks, die Universität Bayreuth und die Fraunhofer-Projektgruppe Prozessinnovation in Bayreuth haben sich zum neuen Netzwerk „Footware Innovation Network (FIN)“ zusammengeschlossen. Das Netzwerk soll dem Orthopädiefachhandwerk den Nutzen digitaler Technologien vom 3D-Scan bis zum 3D-Druck erschließen, um kundenorientiert und dabei kostengünstig höchst individuelle Produkte herstellen zu können.

Praktikable Produktlösungen für das Orthopädiefachhandwerk

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: Künstliche Biofilme für ressourcenschonende Biotechnologie

Im neuen bayerischen Projektverbund BayBiotech kooperieren Bioprozesstechnik und Makromolekulare Chemie an der Universität Bayreuth, um ein innovatives Konzept für künstliche Biofilme zu entwickeln. Deren Potenziale sollen in unterschiedlichen Bereichen der Industrie systematisch genutzt werden können – zum Beispiel in der Energietechnik, der Umwelttechnik oder der Pharmazie.

Welche Chancen bietet die Biotechnologie für eine innovative, in wirtschaftlicher Hinsicht effiziente und zugleich umweltfreundliche Nutzung von Rohstoffen? Um...

Im Focus: Ultraschnelle Bildgebung fürs Gehirn soll noch präziser werden

1,5 Millionen Euro für die Weiterentwicklung der Magnetresonanztomografie an Prof. Dr. Jürgen Hennig / Förderung durch die Deutsche Forschungsgemeinschaft (DFG) / Medizinische Relevanz: Direktes Beobachten schneller Veränderungen in Anatomie und Aktivität des Gehirns, etwa nach einem Schlaganfall / Bereits heute nicht-invasive Ortung von Epilepsieherden im Gehirn möglich

Bildgebende Verfahren für das Gehirn sind entweder schnell oder detailliert. Wie diese Faktoren bei der funktionellen Magnetresonanztomografie (fMRT)...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

KIT 2016: Infektiologen und Tropenmediziner tagen in Würzburg

08.02.2016 | Veranstaltungen

11. European Bioplastics Konferenz 2016

08.02.2016 | Veranstaltungen

TAILORED JOINING – Fügetechnische Kompetenz versammelt sich in Dresden

08.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Laser instead of Reading Glasses?

09.02.2016 | Life Sciences

Wbp2 is a novel deafness gene

09.02.2016 | Life Sciences

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences