Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Algenprotein verstärkt elektrochemische Wasserspaltung

19.12.2011
Durch Wasserspaltung in photoelektrochemischen Zellen Wasserstoff zu erzeugen, ist ein viel versprechender Weg hin zu nachhaltigen Kraftstoffen.

Ein Team aus Schweizer und US-amerikanischen Wissenschaftlern hat vor kurzem hoch effiziente Elektroden entwickelt – aus Algenproteinen, die auch in der natürlichen Photosynthese eine entscheidende Rolle spielen.


Film aus Hämatit-Nanopartikeln (rot) mit vernetztem Phycocyaninprotein (grün). Bild: Dr. E. Vitol, Argonne National Laboratory

Die Photosynthese gilt als «Heiliger Gral» auf dem Gebiet der nachhaltigen Energieerzeugung; sie wandelt Sonnenenergie direkt in speicherbaren Kraftstoff um, als Ausgangsstoffe benötigt sie lediglich Kohlendioxid (CO2) und Wasser. Wissenschaftler versuchen seit langem, die Prozesse der natürlichen Photosynthese nachzuahmen und technisch zu nutzen. So können beispielsweise photoelektrochemische Zellen (PEC) Wasser mit Solarenergie elektrochemisch spalten und dadurch Wasserstoff direkt erzeugen, also ohne den «Umweg», die zur Elektrolyse von Wasser benötigte Energie durch Photovoltaik zu gewinnen.

Die in PEC verwendeten Elektroden werden gewöhnlich aus Halbleitern, etwa Metalloxiden, hergestellt, von denen einige auch photokatalytisch wirken. Forscher der Empa-Abteilung «Hochleistungskeramik» untersuchen schon seit einiger Zeit Nanopartikel dieser Werkstoffe – beispielsweise Titandioxid (TiO2) – mit dem Ziel, damit Luft und Wasser von organischen Schadstoffen zu reinigen. Nun ist es ihnen zusammen mit KollegInnen der Universität Basel und des US-amerikanischen «Argonne National Laboratory» gelungen, eine PEC-Elektrode zu entwickeln, mit der sich Wasser doppelt so effizient spalten lässt wie mit bisherigen Eisenoxidelektroden. Die neuartige «Nano-Bio»-Elektrode besteht aus Eisenoxidpartikeln, an die ein Protein aus Blaualgen (auch als Cyanobakterien bekannt) gekoppelt ist.

Natürliche Photosynthese als Inspiration

Eisenoxid, insbesondere Hämatit (-Fe2O3), ist ein viel versprechendes Material für PEC-Elektroden, da es auch den sichtbaren Teil des Sonnenlichts absorbiert und dieses dadurch effizienter nutzt als etwa TiO2, das nur den ultravioletten Anteil verwenden kann. Ausserdem ist Hämatit kostengünstig und in grossen Mengen verfügbar.

Der zweite Bestandteil der neuartigen Elektrode ist das Blaualgenprotein Phycocyanin. «Die natürliche photosynthetische Maschinerie der Cyanobakterien, in der Phycocyanin als wichtigste Licht sammelnde Komponente fungiert, hat mich inspiriert; ich wollte mit Hilfe von Keramik und eben diesen Proteinen die Photosynthese sozusagen nachbauen», erinnert sich Debajeet K. Bora, der im Rahmen seiner Doktorarbeit an der Empa die neue Elektrode entwickelte. «Das Konzept der Oberflächenfunktionalisierung von Hämatit mit Proteinen war in der PEC-Forschung vorher vollkommen unbekannt.»

Nachdem Bora Phycocyanin kovalent an Hämatit-Nanopartikel gekoppelt und diese in einem dünnen Film immobilisiert hatte, absorbierte das konjugierte Hämatit deutlich mehr Photonen als ohne Protein: Der Photostrom der hybriden Elektrode verdoppelte sich im Vergleich zu einer «normalen» aus Eisenoxid.

Ganz schön robust – zum Glück

Zur Überraschung der Forscher wurde der Proteinkomplex während des Betriebs der PEC nicht zerstört, obwohl er in alkalischer Umgebung und unter Lichteinfluss in direkten Kontakt mit einem Photokatalysator kam. Chemiker hätten bei derart korrosiven und aggressiven Bedingungen eigentlich eine vollständige Denaturierung der Biomoleküle erwartet. «Photokatalysatoren sind darauf ausgelegt, umweltbelastende Kohlenwasserstoffe zu zerstören. Hier haben wir jedoch eine andere Situation», sagt Projektleiter Artur Braun. «Es scheint eine delikate Balance zu geben, bei der organische Moleküle nicht nur die Photokatalyse überleben, sondern unseren Keramikkatalysatoren sogar einen Vorteil verleihen: Sie verdoppeln den Photostrom. Das ist ein enormer Fortschritt.»

Das Projekt wurde vom Bundesamt für Energie (BFE) finanziert. Debajeet K. Bora, der schon bald seine Dissertation abschliesst, wird seine an der Empa begonnene Arbeit an der University of California in Berkeley (USA) fortsetzen, wo er Anfang nächsten Jahres eine Stelle als Postdoktorand antritt.

Literaturhinweis
Debajeet K. Bora, Elena A. Rozhkova, Krisztina Schrantz, Pradeep P. Wyss, Artur Braun, Thomas Graule and Edwin C. Constable: Functionalization of Nanostructured Hematite Thin-Film Electrodes with the Light-Harvesting Membrane Protein C-Phycocyanin Yields an Enhanced Photocurrent, «Advanced Functional Materials», http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101830/pdf

Rémy Nideröst | EMPA
Weitere Informationen:
http://www.empa.ch
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101830/pdf

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics