Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Algenprotein verstärkt elektrochemische Wasserspaltung

19.12.2011
Durch Wasserspaltung in photoelektrochemischen Zellen Wasserstoff zu erzeugen, ist ein viel versprechender Weg hin zu nachhaltigen Kraftstoffen.

Ein Team aus Schweizer und US-amerikanischen Wissenschaftlern hat vor kurzem hoch effiziente Elektroden entwickelt – aus Algenproteinen, die auch in der natürlichen Photosynthese eine entscheidende Rolle spielen.


Film aus Hämatit-Nanopartikeln (rot) mit vernetztem Phycocyaninprotein (grün). Bild: Dr. E. Vitol, Argonne National Laboratory

Die Photosynthese gilt als «Heiliger Gral» auf dem Gebiet der nachhaltigen Energieerzeugung; sie wandelt Sonnenenergie direkt in speicherbaren Kraftstoff um, als Ausgangsstoffe benötigt sie lediglich Kohlendioxid (CO2) und Wasser. Wissenschaftler versuchen seit langem, die Prozesse der natürlichen Photosynthese nachzuahmen und technisch zu nutzen. So können beispielsweise photoelektrochemische Zellen (PEC) Wasser mit Solarenergie elektrochemisch spalten und dadurch Wasserstoff direkt erzeugen, also ohne den «Umweg», die zur Elektrolyse von Wasser benötigte Energie durch Photovoltaik zu gewinnen.

Die in PEC verwendeten Elektroden werden gewöhnlich aus Halbleitern, etwa Metalloxiden, hergestellt, von denen einige auch photokatalytisch wirken. Forscher der Empa-Abteilung «Hochleistungskeramik» untersuchen schon seit einiger Zeit Nanopartikel dieser Werkstoffe – beispielsweise Titandioxid (TiO2) – mit dem Ziel, damit Luft und Wasser von organischen Schadstoffen zu reinigen. Nun ist es ihnen zusammen mit KollegInnen der Universität Basel und des US-amerikanischen «Argonne National Laboratory» gelungen, eine PEC-Elektrode zu entwickeln, mit der sich Wasser doppelt so effizient spalten lässt wie mit bisherigen Eisenoxidelektroden. Die neuartige «Nano-Bio»-Elektrode besteht aus Eisenoxidpartikeln, an die ein Protein aus Blaualgen (auch als Cyanobakterien bekannt) gekoppelt ist.

Natürliche Photosynthese als Inspiration

Eisenoxid, insbesondere Hämatit (-Fe2O3), ist ein viel versprechendes Material für PEC-Elektroden, da es auch den sichtbaren Teil des Sonnenlichts absorbiert und dieses dadurch effizienter nutzt als etwa TiO2, das nur den ultravioletten Anteil verwenden kann. Ausserdem ist Hämatit kostengünstig und in grossen Mengen verfügbar.

Der zweite Bestandteil der neuartigen Elektrode ist das Blaualgenprotein Phycocyanin. «Die natürliche photosynthetische Maschinerie der Cyanobakterien, in der Phycocyanin als wichtigste Licht sammelnde Komponente fungiert, hat mich inspiriert; ich wollte mit Hilfe von Keramik und eben diesen Proteinen die Photosynthese sozusagen nachbauen», erinnert sich Debajeet K. Bora, der im Rahmen seiner Doktorarbeit an der Empa die neue Elektrode entwickelte. «Das Konzept der Oberflächenfunktionalisierung von Hämatit mit Proteinen war in der PEC-Forschung vorher vollkommen unbekannt.»

Nachdem Bora Phycocyanin kovalent an Hämatit-Nanopartikel gekoppelt und diese in einem dünnen Film immobilisiert hatte, absorbierte das konjugierte Hämatit deutlich mehr Photonen als ohne Protein: Der Photostrom der hybriden Elektrode verdoppelte sich im Vergleich zu einer «normalen» aus Eisenoxid.

Ganz schön robust – zum Glück

Zur Überraschung der Forscher wurde der Proteinkomplex während des Betriebs der PEC nicht zerstört, obwohl er in alkalischer Umgebung und unter Lichteinfluss in direkten Kontakt mit einem Photokatalysator kam. Chemiker hätten bei derart korrosiven und aggressiven Bedingungen eigentlich eine vollständige Denaturierung der Biomoleküle erwartet. «Photokatalysatoren sind darauf ausgelegt, umweltbelastende Kohlenwasserstoffe zu zerstören. Hier haben wir jedoch eine andere Situation», sagt Projektleiter Artur Braun. «Es scheint eine delikate Balance zu geben, bei der organische Moleküle nicht nur die Photokatalyse überleben, sondern unseren Keramikkatalysatoren sogar einen Vorteil verleihen: Sie verdoppeln den Photostrom. Das ist ein enormer Fortschritt.»

Das Projekt wurde vom Bundesamt für Energie (BFE) finanziert. Debajeet K. Bora, der schon bald seine Dissertation abschliesst, wird seine an der Empa begonnene Arbeit an der University of California in Berkeley (USA) fortsetzen, wo er Anfang nächsten Jahres eine Stelle als Postdoktorand antritt.

Literaturhinweis
Debajeet K. Bora, Elena A. Rozhkova, Krisztina Schrantz, Pradeep P. Wyss, Artur Braun, Thomas Graule and Edwin C. Constable: Functionalization of Nanostructured Hematite Thin-Film Electrodes with the Light-Harvesting Membrane Protein C-Phycocyanin Yields an Enhanced Photocurrent, «Advanced Functional Materials», http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101830/pdf

Rémy Nideröst | EMPA
Weitere Informationen:
http://www.empa.ch
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101830/pdf

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Tierschutz auf hoher See
17.01.2017 | Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg

nachricht Weltweit erste Solarstraße in Frankreich eingeweiht
16.01.2017 | Wissenschaftliche Abteilung, Französische Botschaft in der Bundesrepublik Deutschland

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau