Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Algenprotein verstärkt elektrochemische Wasserspaltung

19.12.2011
Durch Wasserspaltung in photoelektrochemischen Zellen Wasserstoff zu erzeugen, ist ein viel versprechender Weg hin zu nachhaltigen Kraftstoffen.

Ein Team aus Schweizer und US-amerikanischen Wissenschaftlern hat vor kurzem hoch effiziente Elektroden entwickelt – aus Algenproteinen, die auch in der natürlichen Photosynthese eine entscheidende Rolle spielen.


Film aus Hämatit-Nanopartikeln (rot) mit vernetztem Phycocyaninprotein (grün). Bild: Dr. E. Vitol, Argonne National Laboratory

Die Photosynthese gilt als «Heiliger Gral» auf dem Gebiet der nachhaltigen Energieerzeugung; sie wandelt Sonnenenergie direkt in speicherbaren Kraftstoff um, als Ausgangsstoffe benötigt sie lediglich Kohlendioxid (CO2) und Wasser. Wissenschaftler versuchen seit langem, die Prozesse der natürlichen Photosynthese nachzuahmen und technisch zu nutzen. So können beispielsweise photoelektrochemische Zellen (PEC) Wasser mit Solarenergie elektrochemisch spalten und dadurch Wasserstoff direkt erzeugen, also ohne den «Umweg», die zur Elektrolyse von Wasser benötigte Energie durch Photovoltaik zu gewinnen.

Die in PEC verwendeten Elektroden werden gewöhnlich aus Halbleitern, etwa Metalloxiden, hergestellt, von denen einige auch photokatalytisch wirken. Forscher der Empa-Abteilung «Hochleistungskeramik» untersuchen schon seit einiger Zeit Nanopartikel dieser Werkstoffe – beispielsweise Titandioxid (TiO2) – mit dem Ziel, damit Luft und Wasser von organischen Schadstoffen zu reinigen. Nun ist es ihnen zusammen mit KollegInnen der Universität Basel und des US-amerikanischen «Argonne National Laboratory» gelungen, eine PEC-Elektrode zu entwickeln, mit der sich Wasser doppelt so effizient spalten lässt wie mit bisherigen Eisenoxidelektroden. Die neuartige «Nano-Bio»-Elektrode besteht aus Eisenoxidpartikeln, an die ein Protein aus Blaualgen (auch als Cyanobakterien bekannt) gekoppelt ist.

Natürliche Photosynthese als Inspiration

Eisenoxid, insbesondere Hämatit (-Fe2O3), ist ein viel versprechendes Material für PEC-Elektroden, da es auch den sichtbaren Teil des Sonnenlichts absorbiert und dieses dadurch effizienter nutzt als etwa TiO2, das nur den ultravioletten Anteil verwenden kann. Ausserdem ist Hämatit kostengünstig und in grossen Mengen verfügbar.

Der zweite Bestandteil der neuartigen Elektrode ist das Blaualgenprotein Phycocyanin. «Die natürliche photosynthetische Maschinerie der Cyanobakterien, in der Phycocyanin als wichtigste Licht sammelnde Komponente fungiert, hat mich inspiriert; ich wollte mit Hilfe von Keramik und eben diesen Proteinen die Photosynthese sozusagen nachbauen», erinnert sich Debajeet K. Bora, der im Rahmen seiner Doktorarbeit an der Empa die neue Elektrode entwickelte. «Das Konzept der Oberflächenfunktionalisierung von Hämatit mit Proteinen war in der PEC-Forschung vorher vollkommen unbekannt.»

Nachdem Bora Phycocyanin kovalent an Hämatit-Nanopartikel gekoppelt und diese in einem dünnen Film immobilisiert hatte, absorbierte das konjugierte Hämatit deutlich mehr Photonen als ohne Protein: Der Photostrom der hybriden Elektrode verdoppelte sich im Vergleich zu einer «normalen» aus Eisenoxid.

Ganz schön robust – zum Glück

Zur Überraschung der Forscher wurde der Proteinkomplex während des Betriebs der PEC nicht zerstört, obwohl er in alkalischer Umgebung und unter Lichteinfluss in direkten Kontakt mit einem Photokatalysator kam. Chemiker hätten bei derart korrosiven und aggressiven Bedingungen eigentlich eine vollständige Denaturierung der Biomoleküle erwartet. «Photokatalysatoren sind darauf ausgelegt, umweltbelastende Kohlenwasserstoffe zu zerstören. Hier haben wir jedoch eine andere Situation», sagt Projektleiter Artur Braun. «Es scheint eine delikate Balance zu geben, bei der organische Moleküle nicht nur die Photokatalyse überleben, sondern unseren Keramikkatalysatoren sogar einen Vorteil verleihen: Sie verdoppeln den Photostrom. Das ist ein enormer Fortschritt.»

Das Projekt wurde vom Bundesamt für Energie (BFE) finanziert. Debajeet K. Bora, der schon bald seine Dissertation abschliesst, wird seine an der Empa begonnene Arbeit an der University of California in Berkeley (USA) fortsetzen, wo er Anfang nächsten Jahres eine Stelle als Postdoktorand antritt.

Literaturhinweis
Debajeet K. Bora, Elena A. Rozhkova, Krisztina Schrantz, Pradeep P. Wyss, Artur Braun, Thomas Graule and Edwin C. Constable: Functionalization of Nanostructured Hematite Thin-Film Electrodes with the Light-Harvesting Membrane Protein C-Phycocyanin Yields an Enhanced Photocurrent, «Advanced Functional Materials», http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101830/pdf

Rémy Nideröst | EMPA
Weitere Informationen:
http://www.empa.ch
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101830/pdf

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Kompakte Rangierfelder für RJ45-Module
25.09.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Sicherungsklemmen für unterschiedliche Einsatzgebiete
18.09.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops