Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


A Better Route to Xylan

Joint BioEnergy Institute Researchers Find New Access to Abundant Biomass for Advanced Biofuels

After cellulose, xylan is the most abundant biomass material on Earth, and therefore represents an enormous potential source of stored solar energy for the production of advance biofuels.

A major roadblock, however, has been extracting xylan from plant cell walls. Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have taken a significant step towards removing this roadblock by identifying a gene in rice plants whose suppression improves both the extraction of xylan and the overall release of the sugars needed to make biofuels.

The newly identified gene – dubbed XAX1 – acts to make xylan less extractable from plant cell walls. JBEI researchers, working with a mutant variety of rice plant – dubbed xax1 – in which the XAX1 gene has been “knocked-out” found that not only was xylan more extractable, but saccharification – the breakdown of carbohydrates into releasable sugars – also improved by better than 60-percent. Increased saccharification is key to more efficient production of advanced biofuels.

“In identifying XAX1 as a xylan biosynthetic protein, the first enzyme known to be specific to grass xylan synthesis, we’ve shown that xylan can be modified so as to increase saccharification,” says Henrik Scheller, who heads JBEI’s Feedstocks Division and directs its Cell Wall Biosynthesis group, and also holds an appointment with Lawrence Berkeley National Laboratory (Berkeley Lab). “Our findings provide us with new insights into xylan synthesis and how xylan substitutions may be modified for increased biofuel generation.”

Scheller is a co-author of a paper describing this work that has been published by the Proceedings of the National Academy of Sciences (PNAS). The paper is titled “XAX1 from glycosyltransferase family 61 mediates Xylosyl transfer to rice xylan.” The corresponding author is Pamela Ronald, who holds joint appointments with JBEI and the University of California (UC) Davis. Other authors were Dawn Chiniquy, Vaishali Sharma, Alex Schultink, Edward Baidoo, Carsten Rautengarten, Kun Cheng, Andrew Carroll, Peter Ulvskov, Jesper Harholt, Jay Keasling and Markus Pauly.

As a source of transportation energy, advanced biofuels synthesized from lignocellulosic biomass in grasses and other non-food plants have the potential to replace fossil fuels that are responsible for the annual release of nearly 9 billion metric tons of excess carbon into the atmosphere. Unlike ethanol made from corn or sugarcane, advanced biofuels can be dropped into today’s vehicles with no impact on performance, and used in today’s infrastructures with no modifications required. Advanced biofuels are renewable and carbon-neutral, meaning their use does not add excess carbon to the atmosphere.

Xylan, like cellulose, is a major component of plant cell walls that serves as a valuable source of human and animal nutrition. Despite its importance, few of the enzymes that can synthesize xylan-type polysaccharides have been identified. It is believed that xylan plays an essential structural role in plant cell walls through cross-linking interactions with cellulose and other cell wall components.

“Xylan is of particular interest for the improvement of feedstocks for the generation of cellulosic biofuels, a currently expensive and inefficient process,” says Ronald.

“Xylan inhibits access of the enzymes that break down cellulose into sugars and is an additional substrate for cross-linking to lignin, all of which contributes to the recalcitrance of plant cell walls.”

Dawn Chiniquy was part of a research team that identified XAX1 as the first enzyme known to be specific to xylan synthesis in grasses.

To find genes important for grass xylan biosynthesis, Ronald, Scheller and their co-authors focused on the GT61 family of glycosyltransferases. GT61 enzymes have been identified through bioinformatics as being expanded in grasses and containing grass-specific subgroups. Working with rice plants, the standard plant model for studying grasses, they conducted a reverse genetics screen of 14 genes with insertional rice mutants that are highly expressed members of the GT61 family. This led them to the identification of a mutant plant they named xax1 because its mutation resulted in the function of the XAX1 being knocked-out.

“XAX1 adds a specific xylose sugar to the arabinose substitutions on the xylan chain that creates more cross-links between xylan and lignin, making the plant cell walls less amenable to the production of biofuels,” says Dawn Chiniquy, first author of the paper who is now with the Energy Biosciences Institute. “Without a functioning XAX1 gene, there were fewer cross-links with lignin, which made the xylan more extractable and also increased saccharification.”

Subsequent assays showed the rice xax1 mutant plants to be deficient in ferulic and coumaric acid, aromatic compounds whose residues on arabinose are known to promote cross-linking between xylan chains the lignin. On the down-side, the xax1 mutant did yield a dwarf phenotype, but Scheller says he and his colleagues have already found a way to avoid the dwarf phenotype.

“We can apply the same principle used to make rice plants more easily saccharified to bioenergy crops,” Scheller says. “With the ability to modify cross-linking between xylan and lignin by targeting a glycosyltransferase, we also now have a potentially important new biotechnological tool for grass biofuel feedstocks.”

This research was primarily funded by the DOE Office of Science.

JBEI is one of three Bioenergy Research Centers established by the DOE’s Office of Science in 2007. It is a scientific partnership led by Berkeley Lab and includes the Sandia National Laboratories, the University of California campuses of Berkeley and Davis, the Carnegie Institution for Science, and the Lawrence Livermore National Laboratory. DOE’s Bioenergy Research Centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. For more, visit

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at

Lynn Yarris | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften