Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Kamera soll Zustand eines Aluminiumschmelzofens überwachen

06.09.2017

Kameras und Sensoren sind aus keiner Fabrik mehr wegzudenken: Sie überwachen den Zustand von Maschinen und Werkzeugen, kontrollieren Materialbestände und Arbeitsabläufe. Doch nicht an jedem Ort lässt sich problemlos Messtechnik installieren. Das Institut für Integrierte Produktion Hannover (IPH) gGmbH arbeitet daran, mit einer 3D-Kamera den Zustand eines Aluminiumschmelzofens zu überwachen – in dessen Inneren herrschen bis zu 1000 Grad Celsius.

Um Aluminiumgussteile wie beispielsweise Alufelgen, Zylinderköpfe oder Ventilkörper herzustellen, wird flüssiges Aluminium in Dauerformen gegossen. Geschmolzen wird das Metall vorher in einem Aluminiumschmelzofen.


Aluminiumschmelzofen der ZPF GmbH: Eine 3D-Kamera soll künftig den Zustand des Ofeninnenraums überwachen. Darin herrschen bis zu 1000 Grad Celsius.

Quelle: ZPF GmbH

In einem aktuellen Forschungsprojekt sollen Versuche an einem Schmelzofen durchgeführt werden, dessen Schmelzbad bis zu 5 Tonnen flüssiges Aluminium aufnehmen kann.

Ein Brennersystem schmilzt das auf der Schmelzbrücke stehende Masselpaket langsam auf und das flüssige Metall fließt über die Brücke ins Bad ab. Bis der komplette Block geschmolzen ist, kann es bis zu einer Dreiviertelstunde dauern.

Um neues Material einzusetzen, wird die Chargiertür geöffnet – dies führt zu Energieverlust und Sauerstoffeintrag. Bis dato kann der optimale Zeitpunkt nicht bestimmt werden. Man müsste in den Ofen schauen können, ohne die Chargiertür zu öffnen, um den Energieverlust und Sauerstoffeintrag so gering wie möglich zu halten – beispielsweise mit einer Kamera oder Sensoren.

Daran arbeiten Wissenschaftler aus Hannover, Bremen und Freiberg gemeinsam mit der ZPF GmbH als Anlagenhersteller und der Borbet Thüringen GmbH als Anlagenbetreiber. Die Herausforderung: Aluminium schmilzt bei etwa 660 °C, im Ofen herrschen Temperaturen zwischen 700 und 1000 °C.

„Bei dieser Hitze würde auch jede Kamera und jeder Sensor schmelzen“, sagt Sara Mohammadifard, Maschinenbauingenieurin und Mitarbeiterin am Institut für Integrierte Produktion Hannover (IPH) gGmbH.

Mohammadifard ist es bereits gelungen, ein 3D-Kamerasystem zu entwickeln, das von oben in den Schmelzschacht schauen kann. Damit die Elektronik nicht schmilzt, hat sie die 3D-Kamera außerhalb des Ofens angebracht. Eine kleine Klappe öffnet sich für einen sehr kurzen Zeitraum und die Kamera nimmt ein dreidimensionales Bild des Masselpakets auf.

Prinzipiell ist durch dieses Messverfahren der Energieverlust wesentlich geringer als durch das Öffnen der großen Tür. „Durch diese Maßnahme und die Verwertung der Messdaten in der Anlagensteuerung kann die Energieeffizienz um bis zu 15 Prozent gesteigert und die Schmelzzeit reduziert werden“ sagt Sven-Olaf Sauke von der ZPF GmbH, der im Forschungsprojekt eng mit dem IPH zusammenarbeitet.

Um diesen Wert noch zu verbessern, entwickelt Mohammadifard die Überwachungstechnik im neuen Forschungsprojekt „Effizienzsteigerung eines Aluminiumschmelzofens (ALSO 4.0)“ weiter. An dem Kooperationsprojekt beteiligen sich neben dem IPH und dem Schmelzofen-Hersteller ZPF GmbH auch Forscher der TU Bergakademie Freiberg und des BIBA der Universität Bremen sowie der BORBET Thüringen GmbH.

Gemeinsam verfolgen sie zwei Ziele: Zum einen soll sich die Klappe an der Oberseite des Ofens nahezu gar nicht mehr öffnen – weil künstliche Intelligenz den Schmelzvorgang prognostiziert und somit weniger Messungen benötigt werden. Zum anderen wollen sie eine Technologie entwickeln, um den Automatisierungsgrad am Schmelzofen zu erhöhen.

Die Universität Bremen ist verantwortlich für die Entwicklung der künstlichen Intelligenz. Sie soll das Schmelzverhalten des Aluminiumblocks in Zukunft zuverlässig vorhersagen. Das bereits entwickelte 3D-Kamerasystem wird damit irgendwann überflüssig – für die Praxistests ist es zunächst jedoch unerlässlich. Schließlich müssen die Wissenschaftler überprüfen, ob ihre Vorhersage mit dem Kamerabild übereinstimmt. Sobald die künstliche Intelligenz zuverlässige Ergebnisse liefert, muss sich die Klappe am Ofen nicht mehr öffnen. Somit geht noch weniger Energie verloren.

Das IPH entwickelt im Forschungsprojekt eine neue Technologie, mit der sich überprüfen lässt, in welchem Zustand sich der Ofeninnenraum befindet. Das aktuelle Kamerasystem hat nur das Masselpaket auf der Schmelzbrücke im Blick, nicht aber den gesamten Ofeninnenraum. Dieser ist noch schwieriger zu überwachen, da sich das Kamerasystem nicht in die Ofenwand integrieren lässt. „Deshalb müssen wir die Kamera wahrscheinlich im Inneren des Ofens installieren und vor der extremen Hitze schützen“, sagt Mohammadifard.

Um die Herausforderung zu meistern, haben die Wissenschaftler mehr als zwei Jahre Zeit: Das Forschungsprojekt läuft bis Ende November 2019. Gefördert wird es vom Bundesministerium für Wirtschaft und Energie unter dem Förderkennzeichen 03ET1486E.

Weitere Informationen:

http://www.also40.iph-hannover.de

Susann Reichert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Digitale Messtaster von WayCon – höchst präzise und vielseitig einsetzbar
14.11.2017 | WayCon Positionsmesstechnik GmbH

nachricht FAU-Forscher entwickeln neues Materialsystem für effiziente und langlebige Solarzellen
10.11.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte