Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CeBIT 2017: Big Data und Machine Learning für intelligente Produkte und Geschäftsmodelle

16.02.2017

Big Data und maschinelles Lernen bilden die Grundlagen für intelligente Systeme und sind Schlüsseltechnologien für die Weiterentwicklung von »Künstlicher Intelligenz« (KI). Wenn Maschinen autonom auf Autobahnen, in Fabriken oder Unternehmen eingesetzt werden sollen, müssen sie nicht nur auf Basis von starren Programmen agieren können, sondern durch Erfahrung lernen. Die Experten des Fraunhofer IAIS präsentieren auf der CeBIT vom 20. bis 24. März 2017 in Hannover Technologien, die durch die Kombination von maschinellen Lernverfahren und semantischen Technologien neue intelligente Produkte sowie innovative Geschäftsmodelle ermöglichen.

Wir sprechen mit unseren Smartphones, die ersten autonomen Fahrzeuge sind auf den Straßen unterwegs und Chat-Bots führen täuschend echte Unterhaltungen mit Menschen. Künstliche Intelligenz ist im Alltag angekommen – oft nehmen wir sie schon gar nicht mehr als solche wahr. Auch die Industrie setzt immer mehr auf kognitive Technologien, die nicht nur Daten und Geräte vernetzen, sondern auch Unternehmen und Geschäftsprozesse.

Diese Vernetzung ermöglicht die Entwicklung innovativer Produkte und Dienstleistungen zum Nutzen für Wirtschaft und Gesellschaft. Auf der CeBIT 2017 lädt das Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS zu einem interaktiven Rundgang durch sein »KI-Zukunftslab« ein und zeigt an aktuellen Beispielen aus der Fraunhofer-Forschung, wie Big Data und Machine Learning Produkte und Dienstleistungen auf den Weg zu Künstlicher Intelligenz bringen.

»Machine Learning gerät immer dort an seine Grenzen, wo nicht genügend Daten verfügbar sind, um die Algorithmen entsprechend zu trainieren, oder wenn die Phänomene für die aktuelle Verfahrensgeneration noch zu komplex sind. Deswegen forschen wir am Fraunhofer IAIS daran, das klassische Wissen, das Ingenieure oder Domänenexperten haben, mit dem zu kombinieren, was die Verfahren können«, sagt Prof. Dr. Stefan Wrobel, Institutsleiter des Fraunhofer IAIS.

Diese sogenannten hybriden Forschungsansätze verbinden maschinelle Lernverfahren mit semantischen Technologien, um so die menschliche Fähigkeit, Bedeutungen aus dem Kontext heraus zu verstehen, nachzubilden. Das Ergebnis sind kognitive Systeme, die den Menschen besonders bei komplexen Aufgaben sinnvoll unterstützen können.

Digitale Assistenten und Echtzeit-Empfehlungssysteme

»Sage mir, wie Du lebst und ich sage Dir, welches Auto zu Dir passt!« Die Suche nach einem neuen Fahrzeug kann kompliziert werden – groß ist das Angebot an unterschiedlichen Modellen, Ausstattungsmerkmalen und technischen Features. Anstatt sich durch Unmengen an Konfigurationsdetails zu klicken, macht Mercedes-Benz jetzt die Fahrzeugauswahl zum Lifestyle-Erlebnis: Wissenschaftler des Fraunhofer IAIS haben in Zusammenarbeit mit Berylls Strategy Advisors, Nolte & Lauth und SBN Data Technologies einen selbstlernenden Algorithmus für den »Mercedes-Benz Lifestyle Konfigurator« entwickelt.

Statt nach Modell, Motor und Ausstattungsmerkmalen fragt das Echtzeit-Empfehlungssystem nach Vorlieben bei Musikrichtung, Architektur und Reisezielen und schlägt passend zum Lebensstil eine Auswahl an Fahrzeugen vor. Das Echtzeit-Empfehlungssystem wird dabei zunehmend treffsicherer, je mehr Antworten es gesammelt hat.

Um digitale Assistenten intelligent zu machen, bedarf es Technologien wie Question Answering, die Wissen aus unzähligen Quellen auswerten, semantische Beziehungen zwischen den Informationen erkennen und schließlich in der Lage sind, komplexe Fragen zu beantworten. Digitale Assistenten reagieren auf die Fragen der Menschen, indem sie zahlreiche Wissensquellen durchforsten und nachvollziehbare Antworten liefern.

Wissensgraphen für datengetriebene Geschäftsmodelle

Auch für die Wirtschaft können kognitive Technologien einen entscheidenden Wissens- und Wettbewerbsvorsprung schaffen – nämlich wenn Unternehmen ihren Datenschatz in einem Wissensgraphen bündeln und Markt-, Produkt- und Finanzdaten sowie öffentlich zugängliche Informationen oder Dokumente von Partner-Firmen semantisch analysieren und miteinander verknüpfen. Dann können neue Formen der Zusammenarbeit zwischen Unternehmen entstehen.

Zum Beispiel im Bereich Mobilität: Die Angebote des ÖPNV, Bike-, Car- oder Ridesharing und von Taxiunternehmen können mit Hilfe der Semantic-Web-Technologien zwischen kooperierenden Unternehmen ausgetauscht werden. Auch Faktoren wie Wetter, Verkehrsaufkommen oder Störungen werden berücksichtigt, so dass Kunden bequem und auf dem schnellsten Weg an ihr Ziel kommen. Mit der Entwicklung solcher »Enterprise Knowledge Graphs« unterstützt das Fraunhofer IAIS Unternehmen und Organisationen dabei, ihre Daten und damit ihr Wissen neu zu strukturieren und für neue datengetriebene Geschäftsmodelle zu nutzen.

Autonome Navigation auf Baustellen

Das autonome Fahren ist längst keine Zukunftsvision mehr – Automobilhersteller arbeiten fieberhaft daran, selbstfahrende Autos auf den Markt zu bringen. Doch die Technologie, die in diesen Fahrzeugen steckt, ist komplex und es sind noch viele Herausforderungen zu meistern, bis Autos wirklich sicher fahrerlos durch unsere Straßen navigieren können. Das Team des Fraunhofer IAIS nutzt »Deep-Learning-Verfahren«, um besonders knifflige Probleme beim assistierten bzw. autonomen Fahren zu lösen – etwa die selbständige Navigation auf Baustellen.

Grundlage für eine neue Software sind kamerabasierte Muster- und Bilderkennungsverfahren, die Objekte wie Schilder, Baken und Pylonen erkennen sowie Texte verarbeiten können. So lernt die Software die Inhalte spezifischer Hinweisschilder zu ‚lesen’ oder erkennt, dass sich die Spur verengt. Im Zusammenspiel mit Navigationsgerät und Bordcomputer sollen anders ausgewiesene Autobahn-Ausfahrten auf Baustellen korrekt angesagt, Abstände zu anderen Fahrzeugen optimal bemessen und die Geschwindigkeit rechtzeitig angepasst werden.

Das »KI-Zukunftslab« auf der CeBIT 2017

Diese und weitere spannende Projekte – etwa ein System für virtuelle Bandenwerbung bei Live-Sportereignissen oder einen cleveren Algorithmus zur Betrugserkennung im Finanzgeschäft – stellt das Team des Fraunhofer IAIS auf der CeBIT 2017 in Hannover vor. Auf einem interaktiven Rundgang durch das IAIS-Zukunftslab können sich Messebesucher am Fraunhofer-Gemeinschaftsstand in Halle 6, Stand B36 über die neuen Forschungsansätze im Bereich Big Data, Machine Learning und Künstliche Intelligenz informieren. Zudem stellen die Fraunhofer-Experten Aus- und Weiterbildungsangebote für technologieorientierte, datengetriebene Zukunftsberufe im Bereich »Data Science« vor.

Über Fraunhofer IAIS

Das Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS gehört zu den führenden Einrichtungen für angewandte Forschung im Bereich der intelligenten Datenanalyse und Wissenserschließung. Rund 200 Data Scientists, IT-Spezialisten und IT-Berater unterstützen Unternehmen und Organisationen mit maßgeschneiderten IT-Lösungen bei der Optimierung von Produkten, Dienstleistungen und Prozessen sowie bei der Realisierung von intelligentem Informationsmanagement. Im Fokus stehen dabei Lösungen, die Kunden aus Wirtschaft, Industrie und dem öffentlichen Sektor durch die ganzheitliche Analyse und Verknüpfung von großen Datenbeständen (Big Data) beim Informationsmanagement und der Entscheidungsfindung helfen.

Weitere Informationen:

http://www.iais.fraunhofer.de Weitere Informationen
http://www.cebit.de/aussteller/fraunhofer-institut-iais/W366441 CeBIT Ausstellerhinweise

Silke Loh | Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

Weitere Nachrichten aus der Kategorie CeBIT 2017:

nachricht Schnell und einfach: Edge Datacenter fürs Internet of Things
24.03.2017 | Rittal GmbH & Co. KG

nachricht Lifecycle IT: Erfolgsstory für Datacenter
22.03.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: CeBIT 2017 >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte