Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klebstoffaushärtung mit neuester LED-Technologie

09.02.2007
LED auf dem Vormarsch - auch in der Klebstoffaushärtung. DELOLUX 80: Maßgeschneiderte Entwicklung für die schnelle Polymerisation licht- und UV-härtender Produkte. Optimierung des Prozesses durch neue technische Features. Bessere Bedingungen für die Voraktivierung von Klebstoffen.

Light Emitting Diode - kurz LED - ist das Zauberwort, wenn es heute um Licht geht. Die elektronischen Halbleiterelemente können durch die Auswahl der Materialien und der Dotierung verschiedenes Licht erzeugen und zwar in einem eng eingegrenzten Spektralbereich. Nachdem die LED lange Zeit aufgrund geringer Lichtausbeute und fehlender Verfügbarkeit aller Lichtfarben überwiegend in Nischenanwendungen eingesetzt wurden, erschließen sich der LED nun weite Einsatzbereiche z. B. in der Beleuchtungstechnik. Mitentscheidend für diesen Erfolg war die Entwicklung von so genannten III-V Halbleitern, die im blauen und grünen Spektralbereich ihr Licht emittieren und die die Erzeugung von weißem Licht ermöglichen.

Daneben wurde in den vergangenen zehn Jahren an einer Vervielfachung der Intensität der LEDs gearbeitet. Mittlerweile stehen so leistungsfähige LED Dies zur Verfügung, dass sich weitere Anwendungsbereiche eröffnen: die Polymerisierung von photoinitiiert härtenden Klebstoffen und UV-Lacken, die bisher ausschließlich über klassische Entladungslampen ausgehärtet wurden.

Einleuchtende Vorteile

Der Einsatz von LED-Technologie bietet bei der Aushärtung von Klebstoffen prinzipiell folgende Vorteile gegenüber konventionellen Strahlern.

Die Lebensdauer von LEDs liegt um den Faktor 20 höher als die von Entladungslampen. Dazu kommt, dass Entladungslampen im Prozess dauerhaft angeschaltet sein müssen. Eine LED kann beliebig oft an und ausgeschaltet werden und muss im Prozess nur in der Zeit leuchten, in der die eigentliche Härtung des Klebstoffs stattfindet. Da das Ein- und Ausschalten keinen Einfluss auf die Lebensdauer hat, sondern nur die Gesamtbetriebsdauer zählt, erhöht sich die effektive Lebensdauer der LED um ein Vielfaches.

Leuchtdioden lassen sich unbegrenzt regeln. So kann die Intensität durch die Vorgabe des Stromes stufenlos zwischen 0% und 100% eingestellt werden. Eine exakte Synchronisation im Prozess wird gewährleistet durch Einschaltvorgänge, die im Millisekundenbereich liegen. Aufgrund dieser Eigenschaften lassen sich Belichtungsrampen und Impulse in beliebiger Form erzeugen.

Bei LEDs handelt es sich um Kaltlichtquellen, die keine Strahlung im nahen und mittleren Infrarot abgeben, die zum Erhitzen des Klebstoffs oder des Bauteils führen kann.

Erste LED-Handlampen zur industriellen Klebstoffhärtung wurden auf dem Markt bereits vorgestellt. In der Praxis erwies es sich als problematisch, dass die Lampen nur eine sehr begrenzte Zeit bei voller Leistung betrieben werden können, da eine effiziente Kühlung fehlt. Die Halbleiterlichtquellen wandeln nur ca. 15% bis 20% der elektrischen Energie in Licht um, den Rest in Wärme; daher ist ein richtiges Thermomanagement Voraussetzung, um die LEDs optimal zu nutzen.

Neue Generation für schnelle Prozesse

Will man alle Vorteile der LED Technologie nutzen, muss man bei Design und Entwicklung der Lampen eine Vielzahl von Dingen beachten, die sich aus langjähriger Praxis und Erfahrung mit der Klebstoffherstellung und -verarbeitung herleiten lassen. Als erfolgreicher Systemanbieter stellt DELO Industrie Klebstoffe jetzt eine völlig neue Generation von Aushärtelampen auf Basis von Halbleiterlichtquellen vor (siehe Abb.1). Ziel der DELO-Geräteentwickler war, eine sehr intensive Lichtquelle zur Aushärtung von Acrylat- und Epoxydharzklebstoffen zu entwickeln, die sich optimal in Fertigungsprozesse integrieren lässt. Dazu wird das Licht von bis zu 20 auf einer Platine dichtest gepackten Power LED Dies in einen Konzentrator eingekoppelt. Diese Optik besitzt am Ausgang einen Durchmesser von 17 mm und eine Abstrahlcharakteristik von 30 °, wie sie für einen Flüssigkeitslichtleiter entsprechender Lichtleiterlampen typisch ist.

Die Platine der DELOLUX 80 ist flüssigkeitsgekühlt, der eigentliche LED-Kopf ist über einen flexiblen Schlauch, der sowohl die Kühlung als auch die Versorgungs- und Überwachungsleitungen enthält, mit dem Steuermodul verbunden.

Der Kühlung und Überwachung des LED-Kopfes kommt eine zentrale Rolle zu, da die empfindlichen Chips bei zu hohen Temperaturen (> 100 ° C am PN-Übergang) deutlich stärker degradieren bzw. sogar zerstört werden. Erst eine effektive Flüssigkühlung ermöglicht dauerhaft die hohen elektrischen Leistungen, die notwendig sind, um die entsprechenden Lichtintensitäten zu erreichen. Auf der anderen Seite werden für den Betrieb sicherheitsrelevante Parameter wie Temperatur an der Platine und in der Kühlflüssigkeit und deren Durchflussmenge direkt am LED-Kopf überwacht, um etwaige Fehler im Prozess sofort rückzumelden bzw. eine Beschädigung der LEDs im Störungsfall zu verhindern.

Am Austritt der Optik werden Bestrahlungsstärken von 1,2 W/cm² auf einer Fläche von ca. 230 mm² erreicht. In der unten stehenden Tabelle ist die Lichtleistung, wie sie für existierende Lichtleiterlampen typisch ist, im Vergleich zur DELOLUX 80 zusammengestellt.

UVA VIS
320 nm - 390 nm 390 nm-500 nm
Lichtleiterlampe 3,5 W - 4,5 W 2,5 W - 3,5 W
DELOLUX 80 -- 2,5 W -2,7 W
Damit weist die DELOLUX 80 im sichtbaren Spektralbereich nur eine geringfügig niedrigere Lichtleistung wie jetzige Entladungslampen mit Lichtleiter auf. Die UVA-Leistung, über die Lichtleiterlampen zusätzlich verfügen, lässt sich in vielen Anwendungen nicht nutzen, z. B. bei der Verklebung von Kunststoffen, da der Kunststoff unterhalb 400 nm nicht transparent ist. Somit werden mit der neuen LED-Lampe ähnliche Taktzeiten erreichbar sein, wie mit konventionellen Lichtleiterlampen. Bei Belichtung mit der LED-Lampe polymerisiert der Klebstoff sogar etwas schneller.

Optimiert für mehr Prozesssicherheit

Neben der maximal zu erreichenden Intensität spielt der Einschwingvorgang auf ein stabiles Intensitätsniveau ebenfalls eine wichtige Rolle für den Prozess. Bei LEDs sind Temperatur und abgegebene Lichtmenge fest miteinander verknüpft: je wärmer der Halbleiterchip, desto geringer die Lichtausbeute. Bei vielen bisher eingesetzten Kühlkonzepten wird auf aktive oder passive Luftkühlung gesetzt, die eine relativ lange Thermaliserungszeit nach dem Einschalten mit sich bringt.

Erst nach ca. einer Minute stellt sich eine konstante Temperatur und somit eine konstante Intensität ein. Bei der DELOLUX 80 hingegen ergibt sich aufgrund einer neuartigen Flüssigkeitskühlung ein Temperaturverlauf, der schon nach 0,1 s ein stabiles Niveau erreicht. Ab diesem Zeitpunkt bleibt die Intensität konstant. Somit sind auch sehr schnelle Ein- und Ausschaltvorgänge mit konstanter Intensität realisierbar.

Grundvoraussetzung für die Aushärtung von Klebstoffen ist die spektrale Übereinstimmung von Absorption des Photoinitiators und Emission der Lampe. Wirklich intensive LED Dies im blauen Spektralbereich werden von der Industrie derzeit bei Wellenlängen um 400 nm und 460 nm angeboten. Beide Wellenlängen eignen sich ideal, um lichthärtende Acrylate oder lichtaktivierbare Epoxyde zu polymerisieren und können wahlweise als Lampenkopf der DELOLUX 80 gewählt werden.

Neue Möglichkeiten für die Voraktivierung

Nahezu alle lichthärtenden Acrylate besitzen eine Absorption bis 420 nm bzw. 440 nm und können mit Wellenlängen um 400 nm ausgehärtet werden. Für lichtaktivierbare Epoxidharze empfiehlt es sich Wellenlängen um 460 nm zur Polymerisierung zu wählen. Lichtaktivierbare Epoxidharze können mit Licht genauso bis zur Endfestigkeit ausgehärtet werden wie Acrylate, besitzen darüber hinaus die herausragende Eigenschaft der Voraktivierbarkeit. Dazu wird der Klebstoff mit einer geeigneten Intensität für wenige Sekunden belichtet. Während einer darauf folgenden Offenzeit kann ein weiteres undurchstrahlbares Teil gefügt werden, und der Klebstoff härtet ohne weitere Lichtzufuhr aus. Die Stabilität dieses Prozesses wird maßgeblich von den Eigenschaften und dem Langzeitverhalten der verwendeten Lampentechnologie mit bestimmt.

Hier bietet die LED-Technologie spezifische Vorteile gegenüber Entladungslampen:

Die stabile Intensität während der Belichtung und die lange Lebensdauer kombiniert mit einem sehr geringen Intensitätsabfall, hält die Offenzeiten deutlich konstanter.

Die Reaktivität des Klebstoffs wird nicht durch Wärmeeintrag aus der Lampe beeinflusst.

Die langwellige Strahlung um 460 nm sorgt für eine homogene Voraktivierung über die gesamte Schichtdicke.

Profitieren vom Systemanbieter

Die Verwendung von Halbleiterlichtquellen bietet herausragende Vorteile beim Aushärten von Klebstoffen im Prozess. Vor allem durch die lange Lebensdauer in Kombination mit den Regelungsmöglichkeiten sind sie jetzigen Entladungslampen deutlich überlegen. Zur Erreichung hoher Intensitäten in Kombination mit langer Lebensdauer ist ein ausgeklügeltes Thermomanagement Grundvoraussetzung. All diese Anforderungen wurden dank der jahrzehntelangen Erfahrung als Klebstoffhersteller und Systemanbieter bei der Entwicklung der DELOLUX 80 berücksichtigt und machen die Lampe damit zu einem idealen Werkzeug zur Polymerisierung von Klebstoffen in hoch automatisierten Prozessen, bei denen neben Taktzeit die Prozesssicherheit höchste Priorität besitzt.

DELO Industrie Klebstoffe
Ohmstr. 3
86899 Landsberg
Telefon +49 8191 3204-0
Telefax +49 8191 3204-144
E-Mail info@DELO.de - www.DELO.de
Ansprechpartnerin:
Marion Schilcher
Telefon +49 8191 3204-147
Telefax 049 8191 3204-5147

| Deutsche Messe AG
Weitere Informationen:
http://www.DELO.de
http://www.cebit.de

Weitere Nachrichten aus der Kategorie CeBIT 2007:

nachricht Online: future talk CeBIT 2007, Videos, Fotos
04.04.2007 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

nachricht CeBIT Highlights des Fraunhofer IAO
03.04.2007 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

Alle Nachrichten aus der Kategorie: CeBIT 2007 >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie