Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zweites Gesicht eines krebserzeugenden Proteins

18.02.2016

Das Protein Mdm2 war bisher nur für seine Rolle bei der Entstehung von Krebs bekannt. Göttinger Forscher haben nun nachgewiesen, dass Mdm2 auch in der Zelldifferenzierung eine wichtige Funktion hat. Veröffentlicht in Molecular Cell.

Eine Strategie im Kampf gegen die Krankheit Krebs ist, die Tumorzellen bei ihrer Vermehrung zu stören. Göttinger Grundlagenforscher haben jetzt einen möglichen neuen Ansatzpunkt für Medikamente entdeckt, mit dem sich die Vermehrung von Krebszellen und damit das Tumorwachstum beeinflussen lassen könnten.


Mikroskopische Aufnahmen von Zellen, in denen Mdm2 (rot) und die PRC2-Komponente Suz12 (grün) per Immunfluoreszenz sichtbar gemacht wurden. Die Bilder zeigen, dass Mdm2 und Suz12 sich an denselben Stellen im Zellkern (blau) ansammeln. Foto: umg / Antje Dickmanns

Fündig wurden Göttinger Grundlagenforscher um Prof. Dr. Matthias Dobbelstein, Direktor des Instituts für Molekulare Onkologie an der Universitätsmedizin Göttingen (UMG) und Mitglied im Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), bei einem Protein, das bisher nur für eine ganz spezielle Aufgabe bekannt war: Das Protein Mdm2 kontrolliert ein zelluläres Sicherheitssystem um den Faktor „p53“, das veränderte oder kranke Zellen tötet und so unseren Körper vor Krebs schützt.

Die Göttinger Wissenschaftler haben jetzt entdeckt, dass das Protein Mdm2 über einen zweiten Weg in das Schicksal von Zellen eingreift, der ebenfalls für Krebszellen bedeutsam ist: Mdm2 steuert gemeinsam mit einem anderen Faktor, ob Zellen Stammzellen bleiben oder sich spezialisieren. Die Forschungen wurden von der Else Kröner-Fresenius-Stiftung gefördert. Die Ergebnisse sind in dem Fachjournal Molecular Cell als Hauptartikel erschienen.

Originalveröffentlichung: Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk O, Kassem M, Zhang Y, Lozano G, Johnsen SA, Moll UM, Zhang X, Dobbelstein M. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Molecular Cell, doi: 10.1016/j.molcel.2015.12.008 (2015).

„Bisher versucht man, mit speziellen Wirkstoffen Mdm2 auszuschalten, um das zelluläre Sicherheitssystem „p53“ aus seiner Kontrolle zu befreien und damit gezielt Krebszellen zu töten. Unsere Ergebnisse zeigen, dass ähnliche Arzneimittel möglicherweise auch in Krebszellen wirken könnten, bei denen dieses Sicherheitssystem nicht mehr funktioniert“, sagt Prof. Dobbelstein: „Wir haben festgestellt, dass die für Stammzell-Erhaltung zuständige Proteingruppe PRC2 von Mdm2 bei ihren Aufgaben unterstützt wird. Diese Mdm2-Funktion könnte daher ein neuer Ansatzpunkt für künftige Medikamente sein, um das Tumorzellwachstum einzudämmen.“

FORSCHUNGSERGEBNISSE IM DETAIL

Auf die Spur von PRC2 brachte die Krebsforscher ein bemerkenswerter Umstand: Einerseits kannte man Mdm2 bisher nur in seiner Funktion als Kontrolleur des zellulären Selbsttötungssystems. Andererseits weiß man seit einiger Zeit, dass Mdm2 sich an verschiedene Proteine anlagert, die mit diesem System nichts zu tun haben. Prof. Dobbelstein und seine Mitarbeiter vermuteten daher, dass Mdm2 in der Zelle noch andere Aufgaben hat.

Tatsächlich zeigten erste Experimente, dass Mdm2 einen weiteren bedeutenden Vorgang beeinflusst: die sogenannte Zelldifferenzierung, also die Entwicklung von Stammzellen hin zu Zellen mit speziellen Aufgaben wie zum Beispiel Nerven- oder Hautzellen. „Stammzellen, denen Mdm2 fehlte, differenzierten sich bereitwilliger in spezialisierte Zellen“, sagt Magdalena Wienken, eine der Erstautorinnen der Publikation. „Beim umgekehrten Vorgang beobachteten wir das Gegenteil: Differenzierte Zellen ohne Mdm2 wandelten sich nur ineffizient in Stammzellen.“ Den Forschern stellte sich nun die Frage: Wie genau macht Mdm2 das?

Sie untersuchten im Einzelnen, was sich in den Zellen durch Mdm2 änderte. „Mdm2 beeinflusste interessanterweise bei einer ganz bestimmten Gruppe von Genen, wie aktiv diese waren“, sagt Antje Dickmanns, die andere Erstautorin der Arbeit. Diese Gen-Gruppe brachte die Forscher schließlich auf die Spur von PRC2: „PRC2 steuert nämlich unter anderem genau diese Gene. Und diese Gene wirken entscheidend daran mit, ob eine Stammzelle Stammzelle bleibt oder sich spezialisiert“, sagt Dr. Xin Zhang, Postdoktorand bei Prof. Dobbelstein.

Weitere Experimente zeigten: Mdm2 und PRC2 wirken gemeinsam und ziehen an einem Strang. Nur in Zellen, die Mdm2 haben, kann PRC2 die Differenzierungs-Gene in vollem Umfang regulieren, und Mdm2 lagert sich mit PRC2 zusammen, um diese Aufgabe zu erfüllen.

„Dass Mdm2 neben der Krebsentstehung auch für die Differenzierung von Zellen bedeutsam ist, ist nur auf den ersten Blick überraschend – beide Prozesse sind eng verknüpft“, sagt Prof. Dobbelstein, Senior-Autor der Publikation. „Bei Krebs passiert das Gegenteil wie bei der Zelldifferenzierung: Die Zellen verlieren zunehmend ihre Spezialisierung und zeigen mehr und mehr Merkmale von Stammzellen“, so Dobbelstein.

Damit zieht Mdm2 an gleich zwei Stellen des Zellschicksals die Fäden: Zum einen schützt Mdm2 die Zelle vor dem Suizid, indem es das zelluläre Selbsttötungsprogramm kontrolliert. Zum anderen fördert Mdm2 mithilfe von PRC2 den Erhalt von Stammzellen und die Zellvermehrung. Beides begünstigt das Wachstum von Tumorzellen.

HINTERGRUNDINFORMATIONEN

Krebs entsteht, wenn sich Körperzellen durch schädliche Umwelteinflüsse wie Gifte, Strahlung oder Viren – oder durch bloßen Zufall – krankhaft verändern und anfangen, sich ungebremst zu vermehren. Menschliche Zellen besitzen ein Sicherheits-System, das im Idealfall dafür sorgt, dass es so weit nicht kommt. Ein zentraler Faktor in diesem System ist das Protein p53. p53 wird aktiv, wenn eine Zelle schweren Schaden erleidet und die Gefahr besteht, dass sie sich krankhaft verändert und zu einer Tumorzelle mutiert. Das Protein löst dann ein Programm aus, das die betroffene Zelle tötet. Sie begeht Selbstmord, um den Körper zu schützen. Die Zellen vieler Tumore entkommen diesem Schicksal, weil bei ihnen p53 so verändert ist, dass es nicht mehr funktioniert. Bei gesunden Zellen ist es hingegen im Interesse des Körpers, dass p53 nicht tätig wird. An dieser Stelle kommt Mdm2 ins Spiel. Es hält p53 in Schach, solange seine Dienste nicht vonnöten sind.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Molekulare Onkologie
Göttinger Zentrum für Molekulare Biowissenschaften (GZMB)
Prof. Dr. Matthias Dobbelstein
Telefon 0551 / 39-13840
mdobbel@gwdg.de

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Krebszellen Molecular Cell PRC2 Sicherheitssystem Stammzellen Tumorzellen Zelle Zellen p53 protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE