Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zweites Gesicht eines krebserzeugenden Proteins

18.02.2016

Das Protein Mdm2 war bisher nur für seine Rolle bei der Entstehung von Krebs bekannt. Göttinger Forscher haben nun nachgewiesen, dass Mdm2 auch in der Zelldifferenzierung eine wichtige Funktion hat. Veröffentlicht in Molecular Cell.

Eine Strategie im Kampf gegen die Krankheit Krebs ist, die Tumorzellen bei ihrer Vermehrung zu stören. Göttinger Grundlagenforscher haben jetzt einen möglichen neuen Ansatzpunkt für Medikamente entdeckt, mit dem sich die Vermehrung von Krebszellen und damit das Tumorwachstum beeinflussen lassen könnten.


Mikroskopische Aufnahmen von Zellen, in denen Mdm2 (rot) und die PRC2-Komponente Suz12 (grün) per Immunfluoreszenz sichtbar gemacht wurden. Die Bilder zeigen, dass Mdm2 und Suz12 sich an denselben Stellen im Zellkern (blau) ansammeln. Foto: umg / Antje Dickmanns

Fündig wurden Göttinger Grundlagenforscher um Prof. Dr. Matthias Dobbelstein, Direktor des Instituts für Molekulare Onkologie an der Universitätsmedizin Göttingen (UMG) und Mitglied im Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), bei einem Protein, das bisher nur für eine ganz spezielle Aufgabe bekannt war: Das Protein Mdm2 kontrolliert ein zelluläres Sicherheitssystem um den Faktor „p53“, das veränderte oder kranke Zellen tötet und so unseren Körper vor Krebs schützt.

Die Göttinger Wissenschaftler haben jetzt entdeckt, dass das Protein Mdm2 über einen zweiten Weg in das Schicksal von Zellen eingreift, der ebenfalls für Krebszellen bedeutsam ist: Mdm2 steuert gemeinsam mit einem anderen Faktor, ob Zellen Stammzellen bleiben oder sich spezialisieren. Die Forschungen wurden von der Else Kröner-Fresenius-Stiftung gefördert. Die Ergebnisse sind in dem Fachjournal Molecular Cell als Hauptartikel erschienen.

Originalveröffentlichung: Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk O, Kassem M, Zhang Y, Lozano G, Johnsen SA, Moll UM, Zhang X, Dobbelstein M. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Molecular Cell, doi: 10.1016/j.molcel.2015.12.008 (2015).

„Bisher versucht man, mit speziellen Wirkstoffen Mdm2 auszuschalten, um das zelluläre Sicherheitssystem „p53“ aus seiner Kontrolle zu befreien und damit gezielt Krebszellen zu töten. Unsere Ergebnisse zeigen, dass ähnliche Arzneimittel möglicherweise auch in Krebszellen wirken könnten, bei denen dieses Sicherheitssystem nicht mehr funktioniert“, sagt Prof. Dobbelstein: „Wir haben festgestellt, dass die für Stammzell-Erhaltung zuständige Proteingruppe PRC2 von Mdm2 bei ihren Aufgaben unterstützt wird. Diese Mdm2-Funktion könnte daher ein neuer Ansatzpunkt für künftige Medikamente sein, um das Tumorzellwachstum einzudämmen.“

FORSCHUNGSERGEBNISSE IM DETAIL

Auf die Spur von PRC2 brachte die Krebsforscher ein bemerkenswerter Umstand: Einerseits kannte man Mdm2 bisher nur in seiner Funktion als Kontrolleur des zellulären Selbsttötungssystems. Andererseits weiß man seit einiger Zeit, dass Mdm2 sich an verschiedene Proteine anlagert, die mit diesem System nichts zu tun haben. Prof. Dobbelstein und seine Mitarbeiter vermuteten daher, dass Mdm2 in der Zelle noch andere Aufgaben hat.

Tatsächlich zeigten erste Experimente, dass Mdm2 einen weiteren bedeutenden Vorgang beeinflusst: die sogenannte Zelldifferenzierung, also die Entwicklung von Stammzellen hin zu Zellen mit speziellen Aufgaben wie zum Beispiel Nerven- oder Hautzellen. „Stammzellen, denen Mdm2 fehlte, differenzierten sich bereitwilliger in spezialisierte Zellen“, sagt Magdalena Wienken, eine der Erstautorinnen der Publikation. „Beim umgekehrten Vorgang beobachteten wir das Gegenteil: Differenzierte Zellen ohne Mdm2 wandelten sich nur ineffizient in Stammzellen.“ Den Forschern stellte sich nun die Frage: Wie genau macht Mdm2 das?

Sie untersuchten im Einzelnen, was sich in den Zellen durch Mdm2 änderte. „Mdm2 beeinflusste interessanterweise bei einer ganz bestimmten Gruppe von Genen, wie aktiv diese waren“, sagt Antje Dickmanns, die andere Erstautorin der Arbeit. Diese Gen-Gruppe brachte die Forscher schließlich auf die Spur von PRC2: „PRC2 steuert nämlich unter anderem genau diese Gene. Und diese Gene wirken entscheidend daran mit, ob eine Stammzelle Stammzelle bleibt oder sich spezialisiert“, sagt Dr. Xin Zhang, Postdoktorand bei Prof. Dobbelstein.

Weitere Experimente zeigten: Mdm2 und PRC2 wirken gemeinsam und ziehen an einem Strang. Nur in Zellen, die Mdm2 haben, kann PRC2 die Differenzierungs-Gene in vollem Umfang regulieren, und Mdm2 lagert sich mit PRC2 zusammen, um diese Aufgabe zu erfüllen.

„Dass Mdm2 neben der Krebsentstehung auch für die Differenzierung von Zellen bedeutsam ist, ist nur auf den ersten Blick überraschend – beide Prozesse sind eng verknüpft“, sagt Prof. Dobbelstein, Senior-Autor der Publikation. „Bei Krebs passiert das Gegenteil wie bei der Zelldifferenzierung: Die Zellen verlieren zunehmend ihre Spezialisierung und zeigen mehr und mehr Merkmale von Stammzellen“, so Dobbelstein.

Damit zieht Mdm2 an gleich zwei Stellen des Zellschicksals die Fäden: Zum einen schützt Mdm2 die Zelle vor dem Suizid, indem es das zelluläre Selbsttötungsprogramm kontrolliert. Zum anderen fördert Mdm2 mithilfe von PRC2 den Erhalt von Stammzellen und die Zellvermehrung. Beides begünstigt das Wachstum von Tumorzellen.

HINTERGRUNDINFORMATIONEN

Krebs entsteht, wenn sich Körperzellen durch schädliche Umwelteinflüsse wie Gifte, Strahlung oder Viren – oder durch bloßen Zufall – krankhaft verändern und anfangen, sich ungebremst zu vermehren. Menschliche Zellen besitzen ein Sicherheits-System, das im Idealfall dafür sorgt, dass es so weit nicht kommt. Ein zentraler Faktor in diesem System ist das Protein p53. p53 wird aktiv, wenn eine Zelle schweren Schaden erleidet und die Gefahr besteht, dass sie sich krankhaft verändert und zu einer Tumorzelle mutiert. Das Protein löst dann ein Programm aus, das die betroffene Zelle tötet. Sie begeht Selbstmord, um den Körper zu schützen. Die Zellen vieler Tumore entkommen diesem Schicksal, weil bei ihnen p53 so verändert ist, dass es nicht mehr funktioniert. Bei gesunden Zellen ist es hingegen im Interesse des Körpers, dass p53 nicht tätig wird. An dieser Stelle kommt Mdm2 ins Spiel. Es hält p53 in Schach, solange seine Dienste nicht vonnöten sind.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Molekulare Onkologie
Göttinger Zentrum für Molekulare Biowissenschaften (GZMB)
Prof. Dr. Matthias Dobbelstein
Telefon 0551 / 39-13840
mdobbel@gwdg.de

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Krebszellen Molecular Cell PRC2 Sicherheitssystem Stammzellen Tumorzellen Zelle Zellen p53 protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik