Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum der zweite genetische Code anders ist

03.11.2008
Oxidativer Stress erklärt die Entstehung eines separaten genetischen Codes in Mitochondrien - Titelgeschichte im Wissenschaftsjournal PNAS

Fast 30 Jahre nach seiner Entdeckung scheint das Rätsel um den Ursprung des zweiten genetischen Codes beim Menschen gelöst zu sein. Wissenschaftler der Johannes Gutenberg-Universität Mainz haben eine Erklärung dafür gefunden, warum der Mensch und die meisten Tiere in den Mitochondrien einen zweiten genetischen Code besitzen, der die Information der Erbsubstanz DNA für den Aufbau von Proteinen übersetzt.

"Nach unseren Erkenntnissen dient der zweite genetische Code in den Mitochondrien zur Bildung von ganz speziellen Proteinen, die gegen oxidativen Stress wesentlich besser geschützt sind", teilt Juniorprofessor Dr. Bernd Moosmann vom Institut für Physiologische Chemie und Pathobiochemie der Universität Mainz mit. Das Wissenschaftsmagazin Proceedings of the National Academy of Sciences hat die Entdeckung in seiner jüngsten Ausgabe als Titelgeschichte veröffentlicht.

Erbinformation wird in Form von DNA von Generation zu Generation weitergegeben. Genutzt wird diese Information jedoch ganz überwiegend zum Aufbau von Proteinen, den Hauptbausteinen jeder Zelle. Der Informationsgehalt der DNA muss somit fortwährend in einer eindeutig festgelegten Weise in Proteine übersetzt werden. Die dafür notwendige Übersetzungstabelle ist der genetische Code. Dieser Code ist im Prinzip bei allen Lebewesen identisch; der Mensch benutzt denselben universellen Standard-Code wie sämtliche anderen Tiere, Pflanzen oder Pilze.

Außergewöhnlich überraschend war deswegen im Jahr 1979 die Entdeckung, dass der Mensch und ein relativ großer Teil des Tierreichs noch eine zweite Übersetzungstabelle verwenden, nämlich in den Mitochondrien. Mitochondrien sind winzige Organellen im Inneren jeder Zelle, die eine eigene DNA besitzen und über diese ein gutes Dutzend Proteine vererben, welche eine zentrale Rolle bei der zellulären Atmung, also der Umwandlung von Sauerstoff in chemische Energie, spielen.

Die Wissenschaftler der Arbeitsgruppe Evolutionäre Pathobiochemie vom Institut für Physiologische Chemie und Pathobiochemie der Johannes Gutenberg-Universität Mainz haben nun zum ersten Mal eine Erklärung dafür gefunden, warum der Mensch diesen zweiten genetischen Code überhaupt besitzt und nicht einfach durchgängig den Standard-Code verwendet. Der zweite Code, so die Erklärung, führt zur Synthese von strukturell abnormalen Proteinen, die dafür aber vor gradueller oxidativer Zerstörung durch freie Radikale geschützt sind. "Das ist gerade in den Mitochondrien besonders wichtig, weil bei hohem Sauerstoffumsatz fast immer freie Radikale entstehen", so Moosmann.

Der Hauptunterschied zwischen den beiden genetischen Codes besteht in der veränderten Übersetzung einer bestimmten, sehr häufigen Kodierfunktion. In den Mitochondrien erfolgt eine Übersetzung in die Aminosäure Methionin, die dann in Proteine eingebaut wird. Die Biochemiker konnten nachweisen, dass es hierdurch zu einer massiven Ansammlung von Methionin auf der Oberfläche der Proteine kommt. Dadurch sind diese Proteine vor Oxidation geschützt, weil das Methionin die angreifenden freien Radikale schon an der Proteinoberfläche abfängt. Die Methionine selbst werden dabei nach und nach verbraucht und somit für die Aufrechterhaltung der strukturellen Integrität des gesamten Proteinkomplexes geopfert.

Zum Nachweis dieses in der Biochemie höchst ungewöhnlichen Prinzips entwarfen die Forscher einen multidisziplinären Ansatz aus Bioinformatik, Molecular Modelling, organisch-chemischer Synthese und Analytik sowie klassischer Zellbiologie und konnten so die beschriebenen Zusammenhänge einzeln nachvollziehen. Ihre neuen Erkenntnisse, die vollständig an der Universität Mainz erarbeitet worden sind, wurden von der renommierten Zeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) in der Ausgabe vom 28. Oktober 2008 unter der Überschrift "Mitochondrial methionine and oxidative stress" als Aufmacher präsentiert.

Kontakt und Informationen:
Jun.-Prof. Dr. Bernd Moosmann
Institut für Physiologische Chemie und Pathobiochemie
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26707, -20186; Fax +49 6131 39-20185
E-Mail: moosmann@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.pnas.org
http://www.uni-mainz.de/FB/Medizin/PhysiolChemie/patho/ag_moosmann.htm

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik