Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei neue Biomarker zeigen längeres Überleben bei unheilbaren Hirntumoren an

01.06.2015

Forschungsergebnisse aus den Universitätskliniken für Neurochirurgie sowie Radioonkologie und Strahlentherapie Heidelberg können dabei helfen, neue Medikamente besser zu beurteilen / Veröffentlichungen in „Acta Neuropathologica“ und „Oncotarget“ / Anni Hofmann Stiftung hat die Forschungsarbeiten mit 200.000 Euro gefördert

Zwei neu entdeckte Biomarker zeigen bei Patienten mit äußerst aggressiven Hirntumoren, den Glioblastomen, zuverlässig ein vergleichsweise langsames Fortschreiten der bislang unheilbaren Erkrankung an.


In den Kernen der Tumoren (im Bild blau) von Patienten mit langem Überleben treten häufig zwei Veränderungen an den Untereinheiten der Erbinformation, den Chromosomen 19 und 20 (im Bild rot), auf.

Prof. Andrey Korshunov, Neuropathologie, Universitätsklinikum Heidelberg

Bei diesen Markern, die sich vor allem bei Patienten mit längerer Überlebenszeit finden, handelt es sich um zwei gemeinsam auftretende Veränderungen am Erbgut sowie um Antikörper, Eiweiße des Immunsystems, die sich gezielt gegen bestimmte Tumorproteine richten.

Ihre Ergebnisse haben Wissenschaftler der Universitätskliniken für Neurochirurgie sowie Radioonkologie und Strahlentherapie Heidelberg nun in den beiden renommierten Journals „Acta Neuropathologica“ und „Oncotarget“ veröffentlicht. Die Forschungsarbeiten wurden von der Anni Hofmann Stiftung mit 200.000 Euro unterstützt, die ausschließlich medizinische Forschung an Glioblastomen fördert.

„An der Frage, worin sich langsamer wachsenden Glioblastome von den extrem schnell wachsenden auf molekularer Ebene unterscheiden, wird schon seit einiger Zeit geforscht. Bisher hat man allerdings als nahezu einzige Veränderung im Erbgut, die mit einem längeren Überleben einhergeht, die IDH1-Mutation, identifiziert“, erklärt Professor Dr. Christel Herold-Mende, Leiterin der Sektion Neurochirurgische Forschung an der Neurochirurgischen Universitätsklinik Heidelberg (Ärztlicher Direktor: Professor Dr. Andreas Unterberg) und Seniorautorin beider Artikel.

„Mit unseren Ergebnissen sind wir nun einen großen Schritt weitergekommen. Nur wenn wir verstehen, was das Wachstum der aggressiven Tumoren ausbremst oder beschleunigt, können wir versuchen, gezielt darauf Einfluss zu nehmen.“

Prognosemarker verbessern zukünftig Medikamentenstudien

Bisher bringen die beiden neu entdeckten Biomarker noch keine konkreten Vorteile für Patienten, da die molekularen Zusammenhänge zwischen Marker und Tumorwachstum noch nicht geklärt sind. Sie sind allerdings höchst relevant für die klinische Forschung: Werden beispielsweise neue Medikamente am Patienten getestet, müssen die positiven Effekte der Chromosomenveränderungen bzw. der Antikörper-Reaktion berücksichtigt werden. Ansonsten könnte das Medikament fälschlicherweise zu gut abschneiden. „Je mehr solcher Marker wir entdecken, desto besser können wir vielversprechende Wirkstoff-Kandidaten identifizieren“, sagt die Wissenschaftlerin.

Das Glioblastom ist der häufigste und bösartigste Hirntumor bei Erwachsenen. Jährlich erkranken in Deutschland ca. 3.500 Menschen. Die Behandlung besteht aus Operation mit anschließender Bestrahlung und Chemotherapie. Eine Heilung ist derzeit allerdings nicht möglich: Aus wenigen verbliebenen Krebszellen entwickelt sich in der Regel innerhalb weniger Monate erneut ein Tumor (Rezidiv). 16 Prozent der Patienten überleben die ersten drei Jahre nach der Diagnosestellung, bei ihnen sprechen Mediziner von Langzeitüberlebenden. Die durchschnittliche Überlebenszeit nach der Diagnose beträgt 15 Monate.

Schwachstellen der Hirntumoren finden und nutzen

Ein neuer Prognosemarker, in „Acta Neuropathologica“ beschrieben, findet sich im Erbgut der Tumorzellen. Die Wissenschaftler entdeckten ihn, als sie die Erbinformation aus Tumorproben von mehr als 600 Patienten durchforsteten. „In den Tumoren von Patienten mit langem Überleben (mehr als 36 Monate) traten auffallend häufig zwei bestimmte Veränderungen an den Chromosomen 19 und 20, Untereinheiten der Erbinformation, zusammen auf“, berichtet Christoph Geisenberger, Erstautor dieser Veröffentlichung, Universitätsklinik für Neurochirurgie Heidelberg. Beide Male ist zusätzliches genetisches Material eingefügt.

„Welche Auswirkungen diese beiden Veränderungen auf die molekularen Abläufe in den Tumorzellen haben, ob sie z.B. den Tumor empfindlicher gegenüber körpereigener Abwehr oder Therapie machen, wissen wir noch nicht. Dies herauszufinden, ist der nächste Schritt. Vielleicht stoßen wir dabei auch auf Hinweise, wie wir aggressivere Glioblastome besser behandeln können“, erklärt Professor Dr. Amir Abdollahi, Universitätsklinik für Radioonkologie und Strahlentherapie Heidelberg.

Der zweite Marker, in „Oncotarget“ veröffentlicht, ist die Reaktion des Immunsystems auf einen Eiweißbestandteil, der vor allem im Tumor zu finden ist. Zwar blockieren Tumoren die körpereigene Krebsabwehr, bei einigen Patienten bildet das Immunsystem aber dennoch sogenannte Antikörper gegen einzelne Eiweiße des Tumors. Die Antikörper binden sehr gezielt an diese Eiweiße und markieren sie so für den Angriff patrouillierender Immunzellen. Nach solchen Antikörpern suchte das Heidelberger Team in einer multizentrischen Studie mit mehr als 240 Patienten.

„Tatsächlich haben wir eine Sorte Antikörper entdeckt, die mit einem langen Überleben der Patienten verbunden ist“, so Erstautor Andreas Mock, Neurochirurgische Universitätsklinik. Die Antikörper richten sich gegen einen Teil des Proteins Tenascin-C, das in fast allen Tumoren in großen Mengen gebildet wird. Dazu Herold-Mende: „Das Immunsystem scheint, wenn es über diese speziellen Antikörper verfügt, den Tumor etwas besser in Schach halten zu können als dies bei anderen Patienten der Fall ist. Es bietet sich daher an, diesen Eiweißbestandteil in einem Impfstoff gegen Glioblastome einzusetzen.“ Tumorimpfstoffe sollen das Immunsystem dazu anregen die körpereigene Krebsabwehr zu verstärken.

Neuer Test für die Verlaufskontrolle

Für diese Antikörper-Tests entwickelte das Team um Mock und Herold-Mende zusammen mit der Heidelberger Firma Pepperprint ein geeignetes Analyseverfahren: Dazu werden Bruchstücke von charakteristischen Tumoreiweißen mittels Laserdrucker auf einer Glasplatte fixiert und anschließend mit Blutserum der Patienten überschichtet. Gibt es im Blut passende Antikörper, binden diese an die fixierten Proteinstücke. So zeigt sich deutlich, ob und gegen welche Tumoreiweiße das Immunsystem des jeweiligen Patienten reagiert. „Mit dieser Testmethode könnte man in Zukunft mit geringem Aufwand – man benötigt nur eine sehr geringe Menge Blut – kontrollieren, wie sich das Immunsystem des Patienten im Krankheitsverlauf verhält“, so Herold-Mende. „Möglicherweise kann man so frühzeitig erkennen, ob sich gerade ein Rezidiv bildet und entsprechend früh reagieren.

Literatur:
Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain.
Geisenberger C, Mock A, Warta R, Rapp C, Schwager C, Korshunov A, Nied AK, Capper D, Brors B, Jungk C, Jones D, Collins VP, Ichimura K, Bäcklund LM, Schnabel E, Mittelbron M, Lahrmann B, Zheng S, Verhaak RG, Grabe N, Pfister SM, Hartmann C, von Deimling A, Debus J, Unterberg A, Abdollahi A, Herold-Mende C.
Acta Neuropathol. 2015 May 1. [Epub ahead of print]

Printed peptide arrays identify prognostic TNC serumantibodies in glioblastoma patients.
Mock A, Warta R, Geisenberger C, Bischoff R, Schulte A, Lamszus K, Stadler V, Felgenhauer T, Schichor C, Schwartz C, Matschke J, Jungk C, Ahmadi R, Sahm F, Capper D, Glass R, Tonn JC, Westphal M, von Deimling A, Unterberg A, Bermejo JL, Herold-Mende C.
Oncotarget. 2015 Apr 12. [Epub ahead of print]

Kontakt:
Prof. Dr. Christel Herold-Mende
Leiterin der Sektion Neurochirurgische Forschung
Neurochirurgische Universitätsklinik
Tel.: 06221 56-6405
E-Mail: Christel.Herold-Mende@med.uni-heidelberg.de

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg.

Weitere Informationen:

http://www.glioblastom-forschung.com/ Anni Hofmann Stiftung
http://www.klinikum.uni-heidelberg.de/Willkommen.120228.0.html Neurochirurgische Universitätsklinik Heidelberg
http://www.klinikum.uni-heidelberg.de/Willkommen.116036.0.html Universitätsklinik für Radioonkologie und Strahlentherapie Heidelberg

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE