Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Gehirnhälften, eine Wahrnehmung

05.09.2011
Max-Planck-Forscher zeigen, wie die Kommunikation zwischen Gehirnhälften dividuell subjektives Erleben beeinflusst

Die Großhirnrinde unseres Gehirns ist in zwei Hälften unterteilt, zwischen denen nur verhältnismäßig wenige Verbindungen bestehen. Trotzdem gelingt es uns problemlos, ein zusammenhängendes Bild unserer Umgebung zu erzeugen – unser Wahrnehmungsvermögen ist nicht in zwei Hälften gespalten.


Ein "motion quartet" erzeugt scheinbare Bewegung, indem es zwischen zwei Paaren von Quadraten hin- und herspringt. Die Quadrate werden in der jeweils gegenüberliegenden Hemisphäre des Gehirns wahrgenommen. © MPI für Hirnforschung/Erhan Genç

Für die nahtlose Einheit unserer subjektiven Erfahrungen müssen Informationen von beiden Hemisphären effizient zusammengeführt werden. Eine zentrale Rolle spielt dabei das Corpus Callosum, die größte Faserverbindung zwischen linker und rechter Hirnhälfte. Wissenschaftler des Max-Planck-Instituts für Hirnforschung in Frankfurt haben untersucht, ob Unterschiede zwischen Personen im Aufbau des Corpus callosum festlegen, wie Beobachter einen visuellen Reiz wahrnehmen, für den die linke und rechte Gehirnhälfte zusammenarbeiten müssen. Demnach gibt es einen Zusammenhang zwischen den Merkmalen spezifischer Faserteile und dem subjektiven Erleben von einzelnen Personen.

Erhan Genç und seine Kollegen benutzen in ihrem Versuch eine Bewegungsillusion, „Motion Quartet“ genannt, die auf zwei unterschiedliche Arten wahrgenommen werden kann. Das „Motion Quartet“ verursacht Scheinbewegung, bei der der Eindruck von Bewegung von einer Abfolge unbewegter Objekte ausgelöst wird. Das ist ähnlich wie bei Filmen im Fernsehen oder Kino, die die Wahrnehmung einer natürlichen Dynamik erzeugen, obwohl sie aus einer Sequenz aus Standbildern bestehen.

In den Experimenten der Frankfurter Wissenschaftler lösen vier weiße Quadrate in einer rechteckigen Anordnung den Eindruck von Bewegung aus. Die Anordnung besteht aus zwei alternativen Filmrahmen mit zwei Paaren von diagonal gegenüberliegenden Quadraten (oben links und unten rechts vs. oben rechts und unten links). Die Beobachter sehen entweder waagrechte oder senkrechte Bewegung. Manchmal springt ihre Wahrnehmung zwischen den zwei Interpretationen hin und her, obwohl der Reiz selbst unverändert bleibt.

Interessanterweise weiß man aus früheren Studien, dass meistens vertikale Bewegungen wahrgenommen werden, wenn der Abstand zwischen den vier Quadraten gleich ist und die Beobachter den Mittelpunkt des Quartetts fixieren.

Aufgrund der Organisation des visuellen Systems, muss die Sehinformation für waagrecht erscheinende Bewegung über beide Hirnhälften integriert werden, während die senkrecht erscheinende Bewegung nur von der jeweils gegenüber liegenden Hemisphäre verarbeitet wird. Das Quartett erzeugt deshalb in erster Linie senkrechte Bewegung, denn die Kommunikation zwischen den beiden Gehirnhälften braucht länger als die innerhalb einer Hemisphäre. „Allerdings gibt es große Unterschiede zwischen den Versuchspersonen, welche Bewegungsrichtungen bevorzugt wahrgenommen werden“, sagt Erhan Genç, der die Studie zusammen mit Johanna Bergmann, Wolf Singer und Axel Kohler durchgeführt hat. „Deshalb haben wir untersucht, ob Unterschiede in der Mikrostruktur des Corpus callosum diese Wahrnehmungsunterschiede verursachen.“

Zu diesem Zweck bestimmten die Wissenschaftler einen individuellen Gleichgewichtspunkt für jeden der Teilnehmer, an dem sie beide Bewegungsrichtungen gleich oft wahrnehmen. Bei den meisten Teilnehmern muss der waagrechte Abstand kleiner sein als der senkrechte, nur dann ist die Wahrnehmung sowohl waagrechter als auch senkrechter Bewegung ausgeglichen. Dieser Gleichgewichtspunkt ist über Wochen stabil und damit eine konstante Eigenschaft von Betrachtern, wie gut sie Informationen aus beiden Gehirnhälften integrieren können. Mit Hilfe des Kernspintomografen maßen die Forscher die Diffusion von Wassermolekülen, welche mit der Beschaffenheit der Nervenfasern zusammenhängt.

Die Analysen der Forscher ergaben, dass die Eigenschaften spezifischer Faserteile, die für die Verarbeitung visueller Bewegungen spezialisierte Regionen verbinden, den individuellen Gleichgewichtspunkt des Beobachters bestimmen. „Offenbar können die Teilnehmer mit einem größeren Durchmesser der Nervenfasern und einer dadurch schnelleren Nervenleitungsgeschwindigkeit Sehinformationen aus beiden Hirnhälften besser zusammen führen“, sagt Axel Kohler. Dieser Zusammenhang scheint auf die Bewegungszentren des Sehsystems begrenzt zu sein. Benachbarte Faserbündel des Sehsystems, die andere visuelle Gebiete miteinander verbinden, sind nicht mit dem Gleichgewichtspunkt assoziiert.

„Es ist faszinierend, dass die individuellen Unterschiede zwischen Menschen in der bewussten Wahrnehmung so eng mit dem unterschiedlichen Aufbau des Gehirns verknüpft sind“, sagt Erhan Genç. Solche beträchtlichen anatomischen Unterschiede im Verlauf von Nervenfasern beeinflussen sogar sehr grundlegende sensorische Prozesse – insbesondere, wenn die Kommunikation über die beiden Hirnhälften gefordert ist.

Als nächstes wollen die Wissenschaftler herausfinden, ob ähnliche Einflüsse auch für andere Eigenschaften von Sehinformationen oder andere Sinnesreize bestehen. Möglicherweise beeinflussen auch andere Verbindungen zwischen den Hemisphären außerhalb des Corpus callosum unsere individuellen subjektiven Erfahrungen.

Ansprechpartner
Erhan Genç
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 96769-471
E-Mail: erhan.genc@brain.mpg.de
Originalveröffentlichung
Erhan Genc¸ Johanna Bergmann, Wolf Singer, and Axel Kohler
Interhemispheric Connections Shape Subjective Experience of Bistable Motion
Current Biology, 1. September 2011; DOI 10.1016/j.cub.2011.08.003

Erhan Genç | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4407311/corpus_callosum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Entzündung weckt Schläfer

29.03.2017 | Biowissenschaften Chemie

Mittelstand 4.0-Kompetenz­zentrum Stuttgart gestartet

29.03.2017 | Wirtschaft Finanzen

Energieträger: Biogene Reststoffe effizienter nutzen

29.03.2017 | Ökologie Umwelt- Naturschutz