Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Gehirnhälften, eine Wahrnehmung

05.09.2011
Max-Planck-Forscher zeigen, wie die Kommunikation zwischen Gehirnhälften dividuell subjektives Erleben beeinflusst

Die Großhirnrinde unseres Gehirns ist in zwei Hälften unterteilt, zwischen denen nur verhältnismäßig wenige Verbindungen bestehen. Trotzdem gelingt es uns problemlos, ein zusammenhängendes Bild unserer Umgebung zu erzeugen – unser Wahrnehmungsvermögen ist nicht in zwei Hälften gespalten.


Ein "motion quartet" erzeugt scheinbare Bewegung, indem es zwischen zwei Paaren von Quadraten hin- und herspringt. Die Quadrate werden in der jeweils gegenüberliegenden Hemisphäre des Gehirns wahrgenommen. © MPI für Hirnforschung/Erhan Genç

Für die nahtlose Einheit unserer subjektiven Erfahrungen müssen Informationen von beiden Hemisphären effizient zusammengeführt werden. Eine zentrale Rolle spielt dabei das Corpus Callosum, die größte Faserverbindung zwischen linker und rechter Hirnhälfte. Wissenschaftler des Max-Planck-Instituts für Hirnforschung in Frankfurt haben untersucht, ob Unterschiede zwischen Personen im Aufbau des Corpus callosum festlegen, wie Beobachter einen visuellen Reiz wahrnehmen, für den die linke und rechte Gehirnhälfte zusammenarbeiten müssen. Demnach gibt es einen Zusammenhang zwischen den Merkmalen spezifischer Faserteile und dem subjektiven Erleben von einzelnen Personen.

Erhan Genç und seine Kollegen benutzen in ihrem Versuch eine Bewegungsillusion, „Motion Quartet“ genannt, die auf zwei unterschiedliche Arten wahrgenommen werden kann. Das „Motion Quartet“ verursacht Scheinbewegung, bei der der Eindruck von Bewegung von einer Abfolge unbewegter Objekte ausgelöst wird. Das ist ähnlich wie bei Filmen im Fernsehen oder Kino, die die Wahrnehmung einer natürlichen Dynamik erzeugen, obwohl sie aus einer Sequenz aus Standbildern bestehen.

In den Experimenten der Frankfurter Wissenschaftler lösen vier weiße Quadrate in einer rechteckigen Anordnung den Eindruck von Bewegung aus. Die Anordnung besteht aus zwei alternativen Filmrahmen mit zwei Paaren von diagonal gegenüberliegenden Quadraten (oben links und unten rechts vs. oben rechts und unten links). Die Beobachter sehen entweder waagrechte oder senkrechte Bewegung. Manchmal springt ihre Wahrnehmung zwischen den zwei Interpretationen hin und her, obwohl der Reiz selbst unverändert bleibt.

Interessanterweise weiß man aus früheren Studien, dass meistens vertikale Bewegungen wahrgenommen werden, wenn der Abstand zwischen den vier Quadraten gleich ist und die Beobachter den Mittelpunkt des Quartetts fixieren.

Aufgrund der Organisation des visuellen Systems, muss die Sehinformation für waagrecht erscheinende Bewegung über beide Hirnhälften integriert werden, während die senkrecht erscheinende Bewegung nur von der jeweils gegenüber liegenden Hemisphäre verarbeitet wird. Das Quartett erzeugt deshalb in erster Linie senkrechte Bewegung, denn die Kommunikation zwischen den beiden Gehirnhälften braucht länger als die innerhalb einer Hemisphäre. „Allerdings gibt es große Unterschiede zwischen den Versuchspersonen, welche Bewegungsrichtungen bevorzugt wahrgenommen werden“, sagt Erhan Genç, der die Studie zusammen mit Johanna Bergmann, Wolf Singer und Axel Kohler durchgeführt hat. „Deshalb haben wir untersucht, ob Unterschiede in der Mikrostruktur des Corpus callosum diese Wahrnehmungsunterschiede verursachen.“

Zu diesem Zweck bestimmten die Wissenschaftler einen individuellen Gleichgewichtspunkt für jeden der Teilnehmer, an dem sie beide Bewegungsrichtungen gleich oft wahrnehmen. Bei den meisten Teilnehmern muss der waagrechte Abstand kleiner sein als der senkrechte, nur dann ist die Wahrnehmung sowohl waagrechter als auch senkrechter Bewegung ausgeglichen. Dieser Gleichgewichtspunkt ist über Wochen stabil und damit eine konstante Eigenschaft von Betrachtern, wie gut sie Informationen aus beiden Gehirnhälften integrieren können. Mit Hilfe des Kernspintomografen maßen die Forscher die Diffusion von Wassermolekülen, welche mit der Beschaffenheit der Nervenfasern zusammenhängt.

Die Analysen der Forscher ergaben, dass die Eigenschaften spezifischer Faserteile, die für die Verarbeitung visueller Bewegungen spezialisierte Regionen verbinden, den individuellen Gleichgewichtspunkt des Beobachters bestimmen. „Offenbar können die Teilnehmer mit einem größeren Durchmesser der Nervenfasern und einer dadurch schnelleren Nervenleitungsgeschwindigkeit Sehinformationen aus beiden Hirnhälften besser zusammen führen“, sagt Axel Kohler. Dieser Zusammenhang scheint auf die Bewegungszentren des Sehsystems begrenzt zu sein. Benachbarte Faserbündel des Sehsystems, die andere visuelle Gebiete miteinander verbinden, sind nicht mit dem Gleichgewichtspunkt assoziiert.

„Es ist faszinierend, dass die individuellen Unterschiede zwischen Menschen in der bewussten Wahrnehmung so eng mit dem unterschiedlichen Aufbau des Gehirns verknüpft sind“, sagt Erhan Genç. Solche beträchtlichen anatomischen Unterschiede im Verlauf von Nervenfasern beeinflussen sogar sehr grundlegende sensorische Prozesse – insbesondere, wenn die Kommunikation über die beiden Hirnhälften gefordert ist.

Als nächstes wollen die Wissenschaftler herausfinden, ob ähnliche Einflüsse auch für andere Eigenschaften von Sehinformationen oder andere Sinnesreize bestehen. Möglicherweise beeinflussen auch andere Verbindungen zwischen den Hemisphären außerhalb des Corpus callosum unsere individuellen subjektiven Erfahrungen.

Ansprechpartner
Erhan Genç
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 96769-471
E-Mail: erhan.genc@brain.mpg.de
Originalveröffentlichung
Erhan Genc¸ Johanna Bergmann, Wolf Singer, and Axel Kohler
Interhemispheric Connections Shape Subjective Experience of Bistable Motion
Current Biology, 1. September 2011; DOI 10.1016/j.cub.2011.08.003

Erhan Genç | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4407311/corpus_callosum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Molekulare Kraftmesser

20.09.2017 | Biowissenschaften Chemie

Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen

20.09.2017 | Ökologie Umwelt- Naturschutz

Strom im Flug erzeugen

20.09.2017 | Energie und Elektrotechnik