Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zuschauen, wie eine neue Art entsteht

01.03.2016

Manchmal geht Evolution viel schneller als wir denken. Genetische Analysen ermöglichen es, sehr frühe Stadien der Artbildung zu erkennen und Artbildungsprozesse besser zu verstehen. Zum Beispiel, dass eine Art beginnen kann, sich in zwei aufzuspalten, selbst dann, wenn sich ihre Tochterarten zur gleichen Zeit am gleichen Ort paaren. Eine soeben publizierte Studie des Wasserforschungsinstituts Eawag und der Universität Bern zeigt dies anhand der rasanten Entwicklung des Dreistachligen Stichlings im und um den Bodensee.

Millionen von Dreistachligen Stichlingen bleiben zurzeit in den Netzen der Bodenseefischer hängen – nicht zu deren Freude. Dem kommerziell nicht interessanten, robusten Kleinfisch scheinen im Unterschied zu manchen anderen Arten weder Seenüberdüngung noch Uferverbauungen und Kanalisierungen der Gewässer viel anzuhaben. Seit etwa 150 Jahren breitet er sich im ganzen Mittelland der Schweiz rasant aus.


Dreistachlige Stichlinge (Gasterosteus aculeatus); oben ein Weibchen, unten ein Männchen.

Foto: Andreas Hartl

Nun gibt eine aufwändige genetische Untersuchung der Eawag und der Universität Bern Hinweise, was zum Erfolgsrezept der Stichlinge gehört: Sie können sich offenbar sehr rasch an neue Lebensräume anpassen – so rasch, dass sie den Evolutionsbiologen als Modell dienen, wie sich aus einer Art zwei oder mehr Arten zu entwickeln beginnen.

Statt eines einzigen «Bodenseestichlings» haben sie nämlich unterschiedliche Formen gefunden, die einerseits typisch sind für den See und andererseits für die Seezuflüsse. Und dies, obwohl auch die Stichlinge aus dem See zur Laichzeit in die kleinen Zuflüsse wandern.

«Es war völlig unerwartet, dass sich die Stichlinge in so kurzer Zeit auseinander entwickeln, wenn sie sich doch zur gleichen Zeit und an denselben Orten paaren», sagt David Marques, der Erstautor der Studie, die Teil seiner Doktorarbeit ist. Üblicherweise entwickeln sich eigenständige Arten, indem sie sich an unterschiedliche Lebensräume anpassen und sich räumlich voneinander isoliert fortpflanzen, im See zum Beispiel in verschiedenen Tiefen. Bei den Felchen haben sich zusätzlich auch ganz unterschiedliche Paarungs- und Laichzeiten entwickelt.

Anpassung an die Bedingungen im See oder im Bach

Die Beobachtung einer Artbildung, wie sie sich zurzeit bei den Stichlingen anbahnt ist für die beteiligten Forscher faszinierend. Möglich wurde sie erst in den letzten Jahren, dank des technischen Fortschritts in der DNA-Sequenzierung. Rund 40 Regionen auf 20 verschiedenen Chromosomen haben die Wissenschaftler identifiziert, wo sich die «Seestichlinge» von den «Bachstichlingen» unterscheiden. Mehr als der Hälfte dieser genomischen Inseln zeigen die Unterschiede unabhängig davon ob sich die Stichlinge am gleichen Ort oder an verschiedenen Orten fortpflanzen.

«Das ist ein wichtiger Hinweis darauf, dass diese Fische – aufgrund der Anpassungen an die Bedingungen im See oder im Fluss – im Begriff sind, sich zu neuen Arten zu entwickeln», sagt Marques. Von «neuen Arten» reden die Forschenden allerdings ungern. Für dieses frühe Stadium der Artbildung benutzen sie lieber den Begriff der Ökotypen. Denn ob sich diese in Zukunft jemals zu vollständig voneinander isolierten Arten entwickeln, ist ungewiss.

Studien der Eawag-Forscher um Prof. Ole Seehausen bei Felchen in Schweizer Seen und bei Buntbarschen im Viktoriasee in Ostafrika haben gezeigt, dass gerade solche Ökotypen und jungen Arten oft empfindlich auf Umweltveränderungen reagieren und sogar wieder verschmelzen können. Es scheint aber, dass die Stichlinge im Bodensee schon heute besser gerüstet sind dagegen: Die genetischen Unterschiede befinden sich an Orten in ihrem Erbgut, die bekannt sind für tiefe Rekombinationsraten.

Ältere und grössere Fische im See als in den Bächen

Die genetischen Unterschiede sind nicht nur in den Diagrammen am Computer sichtbar, sie korrespondieren auch mit Merkmalen an den zwei Stichlings-Typen: So bilden die im See lebenden Gruppen zum Beispiel breitere Knochenplatten am Körper und etwas längere Stacheln. Das schützt sie besser vor Raubfischen und fischfressenden Vögeln, die vor allem im und am See vorkommen. Zudem zeigen die See-Stichlingsmännchen eine dunkler rote Kehle als jene in den Bächen. Vielleicht ist es die erfolgreiche Anpassung ans Leben im See, welche die gegenwärtig grossen Bestandeszahlen im Bodensee fördert. Jedenfalls werden die Exemplare im See im Durchschnitt älter und grösser als ihre nahen Verwandten in den Bächen.

Angaben zur Publikation:

David A. Marques, Kay Lucek, Joana I. Meier, Salome Mwaiko, Catherine E. Wagner, Laurent Excoffier and Ole Seehausen. Genomics of rapid speciation in sympatric threespine stickleback. PLoS Genetics. February X, 2016. doi: 10.1371/journal.pgen.1005887

Weitere Informationen:

http://www.eawag.ch/
http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2016/index...

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Berichte zu: Artbildung Excoffier Felchen Laichzeit Stichlinge

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

 
VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Weitere B2B-VideoLinks
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen