Zurück auf Anfang: Reaktivierung von embryonalen Genen verursacht Stammzell-Alterung im Muskel

Im Alter werden bei einer Muskelverletzung Signalwege ausgelöst, die sonst nur in der Embryonalentwicklung eine Rolle spielen und die Regeneration alter Skelettmuskeln massiv beeinträchtigen. (Foto: FLI/adpic/Fotolia)

Die Entwicklung eines Menschen im Mutterleib ist der komplexeste Prozess, den das Leben hervorbringen kann. Nie sind unsere Erbinformationen (DNA) mehr gefordert, nie müssen Gene, Signalwege und Entwicklungsprozesse besser funktionieren und zusammenarbeiten als während dieser Zeit. Die sogenannten Hox-Gene spielen dabei eine entscheidende Rolle. Nach der Geburt sind sie kaum noch aktiv, bleiben aber in Stammzellen zeitlebens nachweisbar.

Forscher des Jenaer Leibniz-Instituts für Alternsforschung – Fritz-Lipmann-Institut (FLI) zeigen nun im Mausmodell, dass im hohen Alter ein Gen der Hox-Familie, das Hoxa9-Gen, in Muskelstammzellen nach einer Verletzung wieder stark aktiviert wird und dass dies die Regenerationsfähigkeit der Muskeln beschränkt. Und noch etwas ist neu: Die fehlerhafte Aktivierung des Gens kann gezielt mit chemischen Wirkstoffen verhindert werden, woraus sich ein neuer Ansatzpunkt für die medikamentöse Unterstützung der Muskelregeneration im Alter ergeben könnte. Die Studie erscheint am 30. November im renommierten Fachjournal Nature.

Aktivierung embryonaler Gene – ein neues Verständnis der Ursachen des Alterns

„Eigentlich sind die embryonalen Signalwege, die durch Hoxa9 ausgelöst werden, dafür zuständig, dass sich beim Embryo die Körperachsen korrekt entwickeln – z.B. bei der Ausbildung der Finger an der Hand“, beschreibt Dr. Stefan Tümpel, co-korrespondierender Autor und Wissenschaftler am FLI, die Funktion der Hox-Gene. Die überraschende Entdeckung der aktuellen Arbeit ist, dass die fehlerhafte Reaktivierung des Hoxa9-Gens bei einer Muskelverletzung im Alter die Regenerationsfähigkeit der Muskelstammzellen hemmt, anstatt sie zu verbessern.

„Nimmt die Funktion der Muskelstammzellen ab, verschlechtert sich die Regenerationsfähigkeit des gesamten Muskels – dies kann im Alter zur Verminderung der Muskelkraft nach einer Verletzung beitragen“, erklärt Dr. Julia von Maltzahn, die am FLI eine Forschungsgruppe zu Muskelstammzellen leitet. Warum es im Alter zu einem Nachlassen der Stammzellfunktion kommt, ist derzeit noch nicht gut verstanden.

Zwar gab es bereits Hinweise darauf, dass Signale der Embryonalentwicklung in alten Muskelstammzellen verstärkt aktiv sind. Aber die Regulator-Gene, die für die Steuerung dieser Signale zuständig sind, wurden bislang nicht mit dem Altern in Zusammenhang gebracht. „Hox-Gene sind evolutionär sehr alte Gene, die von der Fliege bis zum Menschen die Entwicklung der Organe kontrollieren.

Dass die fehlerhafte Aktivierung derselben Gene zum Altern von Muskeln führt, ist überraschend und wird unser Verständnis zu den Ursachen des Alterns grundlegend beeinflussen“, erwartet Prof. Dr. K. Lenhard Rudolph, Wissenschaftlicher Direktor des FLI.

Veränderte epigenetische Stressantwort

Die Aktivierung der Entwicklungsgene im Embryo muss zeitlich genau abgestimmt erfolgen, damit die Bildung der Gewebe und Strukturen perfekt abläuft. Dies erfolgt über Veränderungen des Epigenoms – chemische Modifikationen der Erbinformation (DNA). In Kooperation mit Forschern der ETH Zürich, Dr. Christian Feller und Prof. Dr. Ruedi Aebersold, wurden neuartige Methoden eingesetzt, um zu überprüfen, ob derartige Veränderungen im Epigenom auch Ursache der fehlerhaften Reaktivierung der Hox-Gene während der Alterung sind.

„Die Überraschung war, dass die ruhenden Stammzellen im Alter keine fehlerhafte Aktivierung des Epigenoms zeigten. Nur nach einer Muskelverletzung kam es in den gealterten Stammzellen zu einer übersteigerten epigenetischen Stressantwort, zur Öffnung der DNA und damit wie im Embryo zu einer Aktivierung von Entwicklungsgenen“ erklärt Simon Schwörer, Doktorand am FLI und Erstautor der Studie. Neben den Forschern aus Jena und Zürich haben auch Partner aus Ulm, Heidelberg, Los Angeles und Rochester maßgeblich zu den paradoxen Entdeckungen beigetragen.

Ein Ausblick in die Regenerative Medizin

Ob die Ergebnisse der Studie, die an Mäusen gewonnen wurden, auf den Menschen übertragbar sind, ist Gegenstand jetziger Untersuchungen. „Wir wollen nun mit Partnern vom Universitätsklinikum in Jena untersuchen, ob eine ähnliche Reaktivierung embryonaler Gene auch zum Verlust des Muskelerhalts im alternden Menschen beiträgt“, berichtet Prof. Dr. K. Lenhard Rudolph.

Die in Nature publizierte Studie erbrachte einen ersten experimentellen Beweis, dass Medikamente, die Veränderungen am Epigenom vermindern, die Muskelregeneration in gealterten Mäusen verbessern. Solche Ansätze sind aber nicht sehr spezifisch und beeinflussen die Modifikation der Gene in verschiedenen Zellen. In Kooperation mit Dr. Anja Träger vom „Jena Center for Soft Matters“ soll deswegen untersucht werden, ob eine Nanopartikel-vermittelte, spezifische Hemmung der Hox-Gene die Regeneration von alten Muskeln verbessern kann.

Publikation

Schwörer S, Becker F, Feller C, Baig AH, Köber U, Henze H, Kraus JM, Xin B, Lechel A, Lipka DB, Varghese CS, Schmidt M, Rohs R, Aebersold R, Medina KL, Kestler HA, Neri F, von Maltzahn J*, Tümpel S*, Rudolph KL*. *Co-korrespondierende Autoren. Epigenetic stress responses induce muscle stem cell aging by Hoxa9 developmental signals. Nature 2016 (in press). Doi: 10.1038/nature20603.

Zusatzinformationen:
http://www.leibniz-fli.de/de/institut/oeffentlichkeitsarbeit/press-campaign-nature-paper/

Kontakt

Dr. Evelyn Kästner
Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656373, Fax: 03641-656351, E-Mail: presse@leibniz-fli.de

Hintergrundinformation

Das Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (FLI) in Jena widmet sich seit 2004 der biomedizinischen Alternsforschung. Über 330 Mitarbeiter aus 30 Nationen forschen zu molekularen Mechanismen von Alternsprozessen und alternsbedingten Krankheiten. Näheres unter http://www.leibniz-fli.de.

Die Leibniz-Gemeinschaft verbindet 88 selbständige Forschungseinrichtungen. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen. Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 18.100 Personen, darunter 9.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,6 Milliarden Euro. http://www.leibniz-gemeinschaft.de

http://www.leibniz-fli.de/de/institut/oeffentlichkeitsarbeit/press-campaign-nature-paper/ – Zusatzinformationen zur Nature-Publikation
http://www.leibniz-fli.de – Homepage Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (FLI)

Media Contact

Dr. Kerstin Wagner idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.leibniz-fli.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer