Zur rechten Zeit am rechten Ort

Gitterneurone helfen bei der Raumorientierung. Sie feuern, wenn sich die Maus an bestimmten Orten befindet. Von oben betrachtet bildet das Aktivitätsmuster eines Neurons ein hexagonales Muster. Christina Buetfering, 2014

Das Futterpellet muss noch weiter hinten liegen – eine Maus befindet sich schnüffelnd auf Futtersuche. Damit wir Entfernungen abschätzen und uns im Raum orientieren können, bildet das Gehirn eine innere räumliche Karte.

Dafür sind sogenannte Gitterneuronen wichtig. Sie feuern, wenn sich die Maus an bestimmten Orten befindet. Aus der Vogelperspektive betrachtet bildet das Aktivitätsmuster einer Gitterzelle ein hexagonales Muster im Raum – das ähnlich wie ein Koordinatensystem auf einer Landkarte zu funktionieren scheint (siehe Bild).

Doch wie kommt dieses abstrakte Aktivitätsmuster zustande, das nicht auf sensorische Reize aus der Umwelt beruht? Um Antworten auf diese Frage zu finden, untersuchten Forscher die Verbindungen von Neuronen mithilfe von theoretischen Modellen.

Das derzeit gängigste Modell wird nun von Wissenschaftlern am Bernstein Zentrum Heidelberg/Mannheim und der Abteilung Klinische Neurobiologie an der Medizinischen Fakultät der Universität Heidelberg, sowie dem Deutschen Krebsforschungszentrum (DKFZ) widerlegt, die das Modell mithilfe von Tierexperimenten überprüft haben.

„In unserer Studie haben wir die Nervenzellaktivität bei Mäusen gemessen, die sich frei im Raum bewegen“, erklärt Christina Buetfering, Erstautorin der Studie. „Dabei haben wir sowohl die Gitterzellen angeschaut, als auch Nervenzellen, die diese Gitterzellen untereinander verbinden: die Interneurone“.

Der entscheidende Trick: Die Aktivität der Interneurone konnte in den gentechnisch veränderten Mäusen mithilfe von Lichtsignalen gezielt an- und ausgeschaltet werden. Während sich die Mäuse im Raum zur Futtersuche bewegten, aktivierten die Forscher sie hin und wieder. Das half ihnen die Zellen im gemessenen Datenstrom zu identifizieren und detailliert zu betrachten. Gleichzeitig konnten sie analysieren, wie Gitterzellen auf die Aktivität der Interneurone reagieren – und folglich mit ihnen verbunden sein mussten.

Die Wissenschaftler fanden heraus, dass Interneurone – anders als Gitterzellen – kein räumliches Aktivitätsmuster zeigen. Außerdem sind einzelne Interneurone nicht ausschließlich mit Gitterzellen mit ähnlichem Aktivitätsmuster verbunden. Vielmehr bekommen sie ihre Eingangssignale von ganz unterschiedlichen Gitterzellen und geben sie an verschiedenartigste Nervenzellen weiter. „Mit diesen Ergebnissen konnten wir gleich zwei grundlegende Voraussagen des aktuellen theoretischen Netzwerkmodells widerlegen“, erörtert Buetfering. „Dieses geht davon aus, dass zur Erzeugung der inneren mentalen Karte Gitterzellen mit gleicher räumlicher Ausrichtung ganz eng verbunden sein müssen – was über räumlich aktive Interneurone realisiert zu sein schien.“

Die Hauptaufgabe der Interneurone scheint jedoch eine andere zu sein. Die Zelle geben hemmende Signale an ganz verschiedene Neurone in ihrer Umgebung ab. Sie könnten daher eher eine modulierende Funktion übernehmen und im Hirnareal bei übermäßiger Nervenzellaktivität eine Balance zwischen Erregung und Hemmung herstellen. Auf diese Weise könnten sie epileptischen Anfällen vorbeugen. Der Grund wie es Gitterzellen gelingt, zur rechten Zeit am rechten Ort zu feuern und dadurch ein abstraktes mentales Koordinatensystem zu generieren, ist wiederum etwas mysteriöser geworden.

Das Bernstein Zentrum Heidelberg/Mannheim ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 180 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Prof. Dr. Hannah Monyer
Klinische Neurobiologie (A230)
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
Tel: +49 (0)6221 42 3100
Email: h.monyer@dkfz.de

Originalpublikation:
C. Buetfering, K. Allen & H. Monyer (2014): Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nature Neuroscience, advanced online publication
doi: 10.1038/nn.3696

http://www.dkfz.de/de/klinische-neurobiologie Arbeitsgruppe Hannah Monyer
http://www.uni-heidelberg.de Universität Heidelberg
http://www.klinikum.uni-heidelberg.de Universitätsklinikum Heidelberg
http://www.dkfz.de Deutsches Krebsforschungszentrum
http://www.bccn-heidelberg-mannheim.de Bernstein Zentrum Heidelberg/Mannheim
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Media Contact

Mareike Kardinal idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer