Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zur rechten Zeit am rechten Ort

27.06.2014

Um uns im Raum zu orientieren, generiert unser Gehirn ein internes Koordinatensystem. Heidelberger Forscher widerlegen nun das gängige Modell, wie Nervenzellen diese mentale Landkarte erstellen.

Das Futterpellet muss noch weiter hinten liegen – eine Maus befindet sich schnüffelnd auf Futtersuche. Damit wir Entfernungen abschätzen und uns im Raum orientieren können, bildet das Gehirn eine innere räumliche Karte.


Gitterneurone helfen bei der Raumorientierung. Sie feuern, wenn sich die Maus an bestimmten Orten befindet. Von oben betrachtet bildet das Aktivitätsmuster eines Neurons ein hexagonales Muster.

Christina Buetfering, 2014

Dafür sind sogenannte Gitterneuronen wichtig. Sie feuern, wenn sich die Maus an bestimmten Orten befindet. Aus der Vogelperspektive betrachtet bildet das Aktivitätsmuster einer Gitterzelle ein hexagonales Muster im Raum – das ähnlich wie ein Koordinatensystem auf einer Landkarte zu funktionieren scheint (siehe Bild).

Doch wie kommt dieses abstrakte Aktivitätsmuster zustande, das nicht auf sensorische Reize aus der Umwelt beruht? Um Antworten auf diese Frage zu finden, untersuchten Forscher die Verbindungen von Neuronen mithilfe von theoretischen Modellen.

Das derzeit gängigste Modell wird nun von Wissenschaftlern am Bernstein Zentrum Heidelberg/Mannheim und der Abteilung Klinische Neurobiologie an der Medizinischen Fakultät der Universität Heidelberg, sowie dem Deutschen Krebsforschungszentrum (DKFZ) widerlegt, die das Modell mithilfe von Tierexperimenten überprüft haben.

„In unserer Studie haben wir die Nervenzellaktivität bei Mäusen gemessen, die sich frei im Raum bewegen“, erklärt Christina Buetfering, Erstautorin der Studie. „Dabei haben wir sowohl die Gitterzellen angeschaut, als auch Nervenzellen, die diese Gitterzellen untereinander verbinden: die Interneurone“.

Der entscheidende Trick: Die Aktivität der Interneurone konnte in den gentechnisch veränderten Mäusen mithilfe von Lichtsignalen gezielt an- und ausgeschaltet werden. Während sich die Mäuse im Raum zur Futtersuche bewegten, aktivierten die Forscher sie hin und wieder. Das half ihnen die Zellen im gemessenen Datenstrom zu identifizieren und detailliert zu betrachten. Gleichzeitig konnten sie analysieren, wie Gitterzellen auf die Aktivität der Interneurone reagieren – und folglich mit ihnen verbunden sein mussten.

Die Wissenschaftler fanden heraus, dass Interneurone – anders als Gitterzellen – kein räumliches Aktivitätsmuster zeigen. Außerdem sind einzelne Interneurone nicht ausschließlich mit Gitterzellen mit ähnlichem Aktivitätsmuster verbunden. Vielmehr bekommen sie ihre Eingangssignale von ganz unterschiedlichen Gitterzellen und geben sie an verschiedenartigste Nervenzellen weiter. „Mit diesen Ergebnissen konnten wir gleich zwei grundlegende Voraussagen des aktuellen theoretischen Netzwerkmodells widerlegen“, erörtert Buetfering. „Dieses geht davon aus, dass zur Erzeugung der inneren mentalen Karte Gitterzellen mit gleicher räumlicher Ausrichtung ganz eng verbunden sein müssen – was über räumlich aktive Interneurone realisiert zu sein schien.“

Die Hauptaufgabe der Interneurone scheint jedoch eine andere zu sein. Die Zelle geben hemmende Signale an ganz verschiedene Neurone in ihrer Umgebung ab. Sie könnten daher eher eine modulierende Funktion übernehmen und im Hirnareal bei übermäßiger Nervenzellaktivität eine Balance zwischen Erregung und Hemmung herstellen. Auf diese Weise könnten sie epileptischen Anfällen vorbeugen. Der Grund wie es Gitterzellen gelingt, zur rechten Zeit am rechten Ort zu feuern und dadurch ein abstraktes mentales Koordinatensystem zu generieren, ist wiederum etwas mysteriöser geworden.

Das Bernstein Zentrum Heidelberg/Mannheim ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 180 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Prof. Dr. Hannah Monyer
Klinische Neurobiologie (A230)
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
Tel: +49 (0)6221 42 3100
Email: h.monyer@dkfz.de

Originalpublikation:
C. Buetfering, K. Allen & H. Monyer (2014): Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nature Neuroscience, advanced online publication
doi: 10.1038/nn.3696

Weitere Informationen:

http://www.dkfz.de/de/klinische-neurobiologie Arbeitsgruppe Hannah Monyer
http://www.uni-heidelberg.de Universität Heidelberg
http://www.klinikum.uni-heidelberg.de Universitätsklinikum Heidelberg
http://www.dkfz.de Deutsches Krebsforschungszentrum
http://www.bccn-heidelberg-mannheim.de Bernstein Zentrum Heidelberg/Mannheim
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie