Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunftsvision: Ein Herz, das nachwächst

30.03.2011
Wissenschaftler der Universitätsklinik für Herzchirurgie Heidelberg nehmen selbst konzipierten Bioreaktor in Betrieb

Aus patienteneigenen Zellen ein neues und funktionsfähiges Herz heranwachsen zu lassen, das ist das Ziel eines Wissenschaftlerteams der Universitätsklinik für Herzchirurgie Heidelberg (Ärztlicher Direktor: Professor Dr. Matthias Karck). Erstmals sind dazu nun die technischen Voraussetzungen erfüllt:

Im Februar 2011 hat die Gruppe um Dr. Alexander Weymann und Dr. Bastian Schmack einen neuartigen Bioreaktor in Betrieb genommen, der groß genug ist und optimale Wachstumsbedingungen für das neue Organ bietet. Das Gerät haben die Forscher selbst konzipiert.

Die Zahl schwer herzkranker Menschen, denen nur eine Transplantation das Leben retten kann, steigt stetig. Doch es gibt bei weitem nicht genug Spenderherzen: Im Jahr 2010 wurden laut der Deutschen Stiftung Organtransplantation 377 Herz- und 16 kombinierte Herz-Lungen-Transplantationen durchgeführt, gleichzeitig aber fast doppelt so viele Menschen neu auf die Warteliste für ein Spenderherz gesetzt. „Es ist nötig, neue und vor allem innovative Strategien für die Behandlung dieser Patienten zu entwickeln, um möglichst unabhängig von Spenderorganen zu werden“, erklärt Dr. Weymann, der 2009 von der Charité Berlin ans Universitätsklinikum Heidelberg wechselte und dort die Arbeitsgruppe „Whole Heart Tissue Engineering" gründete.

Patienteneigene Zellen siedeln sich auf Fasergerüst an

Die Idee: Das Herz eines Schweins, das dem menschlichen Herzen in Aufbau und Größe sehr ähnlich ist, wird im Labor von sämtlichen Zellen befreit – nach einem Verfahren, das die Gruppe selbst entwickelt hat. Dadurch können später beim Patienten keine Abstoßungsreaktionen mehr auftreten. Übrig bleibt ein kollagenhaltiges Fasergerüst, das in einer speziellen Kultivierungskammer, dem Bioreaktor, von patienteneigenen Zellen durchspült und von diesen neu besiedelt werden soll. Erfolge zeigte dieses Verfahren bereits bei der Züchtung neuer Herzklappen. „In den USA ist es auf diese Weise gelungen, funktionsfähige Rattenherzen zu züchten. Mit größeren Herzen hat es bisher noch nicht geklappt“, sagt Weymann.

Voraussetzung ist ein Bioreaktor in entsprechender Größe: Bisher verfügbare Modelle sind für die Forschung an Kleintieren und die Züchtung von Herzklappen konzipiert. Der Herzchirurg suchte daher nach Kooperationspartnern in der Industrie; 2010 erhielt er den Zuschlag von der Göttinger Firma Sartorius Stedim Biotech, die das Gerät umsetzte. In dem transparenten Reaktor herrschen gleiche Bedingungen wie im menschlichen Körper. So wird z.B. die Nährflüssigkeit mit den Patientenzellen stoßweise, wie beim schlagenden Herzen, durch das neu entstehende Organ gepumpt. Alle Einstellungen sind über das Internet steuerbar.

„Forschung steht noch ganz am Anfang“

Noch ist es bis zum maßgeschneiderten Ersatzherz allerdings ein weiter Weg, der noch viele Jahre in Anspruch nehmen dürfte. Ein funktionsfähiges Herz besteht aus mehreren Zelltypen, die unterschiedliche Aufgaben erfüllen und eng miteinander vernetzt sind. „Die Forschung auf diesem Gebiet steht noch ganz am Anfang. Wir wissen z.B. noch nicht, welche Faktoren während dieses hochkomplexen Vorgangs die Zellen an den richtigen Platz im Gewebeverband lotsen oder das Herz zum Schlagen bringen“, so Weymann.

Diese Fragen will die Arbeits­gruppe – Teil des Forschungsteams „Experimentelle Herzchirurgie“ unter der Leitung des geschäftsführenden Oberarztes Professor Dr. Gábor Szabó – nun klären. In den ersten Versuchen kommen Herzzellen von neugeborenen Ratten zum Einsatz; in Zukunft könnten Stamm­zellen aus dem Nabelschnurblut, direkt bei der Geburt tiefgefroren und eingelagert, den schwerkranken Patienten zu einem neuen Herz verhelfen.

Ansprechpartner:
Dr. Alexander Weymann
Universitätsklinikum Heidelberg
Im Neuenheimer Feld 110
69120 Heidelberg
Tel.: 06221 / 56 36 511
E-Mail: Alexander.Weymann@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 10.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 50 Departments, Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.600 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops