Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunft der Lab-on-Chip-Anwendungen: Organische Elektronik

12.11.2014

Das Fraunhofer FEP präsentiert neueste Methoden zur Herstellung von OLED-Bauelementen für Lab-on-Chip-Anwendungen unter Einsatz UV-naher Elektrolumineszenz (EL) oder optisch moduliertem grünen Licht zur Stimulierung von Fluoreszenzmarkerfarbstoffen.

Intelligente und portable medizinische Ausrüstung ist für die schnelle und einfache Point-of-Care- und Point-of-Use-Diagnostik unerlässlich. Lab-on-Chip-Anwendungen in tragbaren Geräten können im Notfall dazu beitragen, wertvolle Zeit für langwierige labormedizinische Analysen zu sparen.


UV-OLED

Die Kombination von submikrometerdicken lichtemittierenden Bauelementen und Photodetektoren mit abstimmbaren spektralen Eigenschaften könnten bei zukünftigen Sensorchips auf Basis organischer Elektronik eine Schlüsselrolle spielen.

Solche Sensorchips ermöglichen die Ansteuerung und Erkennung von Fluoreszenz oder Phosphoreszenz in einem Marker. Sogar zeitaufgelöste Messungen sind nun möglich. Durch die gemeinsame Integration von OLED und organischen Photodioden in einem Chip werden kostengünstige persönliche Diagnostika außerhalb des Labors und direkt vor Ort möglich.

Auf der IDW 2014 stellt das Fraunhofer FEP zwei verschiedene OLED-Bauelementkonzepte vor: ein UV-nah emittierendes und ein im grünen Spektralbereich emittierendes Bauelement. Beide können in Sensoranwendungen integriert werden.

Diese beiden OLED-Entwicklungen eignen sich besonders für biomedizinische und biotechnische Sensorik in Lab-on-Chip-Anwendungen. Die ultraviolettnahe Emission einer OLED wird sowohl für bottom-, als auch top-emittierende Bauelementarchitekturen gezeigt.

Weiterhin haben die Wissenschaftler eine grüne top-emittierende OLED mit einem optischen Dünnfilmfilter und Dünnschichtverkapselung kombiniert, sodass die Probensubstanz ganz nah an die Anregungsquelle herangebracht werden kann. Die beiden Bauelemente sind sowohl für großflächige Anwendungen als auch zur Integration in Siliziumchips als Lichtquelle für die optische Anregung geeignet, um bspw. Fluoreszenz- oder Phosphoreszenz-Signale anzuregen und zu erkennen.

Dr. Michael Thomschke, Projektleiter am Fraunhofer FEP erklärt: “Diese Entwicklungen könnten in sehr kleine, ultradünne organische Bauelemente auf Glas, Folie oder opakem Silizium integriert werden. Diese Integration kann sehr kosteneffizient sein, da die entsprechenden Prozesse sowohl eine großflächige Herstellung als auch Bauelemente im Mikrometer-Bereich ermöglichen.“

Später könnten derartige Bauelemente um Mikrofluidik-Elemente oder externe Optik erweitert werden, um für eine bestimmte Anwendung einsetzbar zu sein.

Am konferenzbegleitenden Stand des Fraunhofer FEP werden wir neben den Ergebnissen zur UV-OLED weitere Demonstratoren wie z. B. unsere neuesten OLED Mikrodisplays und flexible OLED auf unterschiedlichen Substraten zeigen.

Neben der Ausstellung wird Dr. Michael Thomschke einen Vortrag während der Konferenz am 3. Dezember, von 15.45 Uhr bis 16.05 Uhr zum Thema „OLED on Silicon for Sensor Applications“ mit den neuesten Erkenntnissen zu OLED Bauelementen für Lab-on-Chip Anwendungen in Snow Hall B halten.

Über Fraunhofer FEP:
Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl und Plasmatechnik FEP bearbeitet innovative Themenstellungen auf den Arbeitsgebieten der Vakuumbeschichtung, der Oberflächenbearbeitung und -behandlung mit Elektronen und Plasmen und der organischen Halbleiter. Grundlage dieser Arbeiten sind die Kernkompetenzen Elektronenstrahltechnologie, Sputtern und Plasma-aktivierte sowie PECVD Hochratebeschichtung, Technologien für organische Elektronik und IC-/Systemdesign.

Fraunhofer FEP bietet damit ein breites Spektrum an Forschungs-, Entwicklungs- und Pilotfertigungsmöglichkeiten, insbesondere für Behandlung, Sterilisation, Strukturierung- und Veredelung von Oberflächen sowie für OLED-Mikrodisplays, organische und anorganische Sensoren, optische Filter und flexible OLED-Beleuchtung.

Ziel ist, das Innovationspotenzial der Elektronenstrahl-, Plasmatechnik und organischen Elektronik für neuartige Produktionsprozesse und Bauelemente zu erschließen und es für unsere Kunden nutzbar zu machen.

Das COMEDD (Center for Organics, Materials and Electronic Devices Dresden) führt seit 2014 alle bisherigen Aktivitäten im Bereich der organischen Elektronik unter dem Dach des Fraunhofer FEP weiter.

Weitere Informationen sind erhältlich:
Fraunhofer FEP
Ines Schedwill
Leiterin Marketing
Maria-Reiche-Str. 2
01109 Dresden
Tel.: +49 (0) 351/8823-238
Fax: +49 (0) 351/8823-394
e-mail: Ines.Schedwill@comedd.fraunhofer.de

Annett Arnold
Leiterin Unternehmenskommunikation
Winterbergstr. 28
01227 Dresden
Internet: www.fep.fraunhofer.de
Tel.: +49 (0) 351/2586-452
Fax: +49 (0) 351/2586-105
e-mail: Annett.Arnold@fep.fraunhofer.de


Weitere Informationen:

http://s.fhg.de/4VG

Annett Arnold | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE