Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunft der Lab-on-Chip-Anwendungen: Organische Elektronik

12.11.2014

Das Fraunhofer FEP präsentiert neueste Methoden zur Herstellung von OLED-Bauelementen für Lab-on-Chip-Anwendungen unter Einsatz UV-naher Elektrolumineszenz (EL) oder optisch moduliertem grünen Licht zur Stimulierung von Fluoreszenzmarkerfarbstoffen.

Intelligente und portable medizinische Ausrüstung ist für die schnelle und einfache Point-of-Care- und Point-of-Use-Diagnostik unerlässlich. Lab-on-Chip-Anwendungen in tragbaren Geräten können im Notfall dazu beitragen, wertvolle Zeit für langwierige labormedizinische Analysen zu sparen.


UV-OLED

Die Kombination von submikrometerdicken lichtemittierenden Bauelementen und Photodetektoren mit abstimmbaren spektralen Eigenschaften könnten bei zukünftigen Sensorchips auf Basis organischer Elektronik eine Schlüsselrolle spielen.

Solche Sensorchips ermöglichen die Ansteuerung und Erkennung von Fluoreszenz oder Phosphoreszenz in einem Marker. Sogar zeitaufgelöste Messungen sind nun möglich. Durch die gemeinsame Integration von OLED und organischen Photodioden in einem Chip werden kostengünstige persönliche Diagnostika außerhalb des Labors und direkt vor Ort möglich.

Auf der IDW 2014 stellt das Fraunhofer FEP zwei verschiedene OLED-Bauelementkonzepte vor: ein UV-nah emittierendes und ein im grünen Spektralbereich emittierendes Bauelement. Beide können in Sensoranwendungen integriert werden.

Diese beiden OLED-Entwicklungen eignen sich besonders für biomedizinische und biotechnische Sensorik in Lab-on-Chip-Anwendungen. Die ultraviolettnahe Emission einer OLED wird sowohl für bottom-, als auch top-emittierende Bauelementarchitekturen gezeigt.

Weiterhin haben die Wissenschaftler eine grüne top-emittierende OLED mit einem optischen Dünnfilmfilter und Dünnschichtverkapselung kombiniert, sodass die Probensubstanz ganz nah an die Anregungsquelle herangebracht werden kann. Die beiden Bauelemente sind sowohl für großflächige Anwendungen als auch zur Integration in Siliziumchips als Lichtquelle für die optische Anregung geeignet, um bspw. Fluoreszenz- oder Phosphoreszenz-Signale anzuregen und zu erkennen.

Dr. Michael Thomschke, Projektleiter am Fraunhofer FEP erklärt: “Diese Entwicklungen könnten in sehr kleine, ultradünne organische Bauelemente auf Glas, Folie oder opakem Silizium integriert werden. Diese Integration kann sehr kosteneffizient sein, da die entsprechenden Prozesse sowohl eine großflächige Herstellung als auch Bauelemente im Mikrometer-Bereich ermöglichen.“

Später könnten derartige Bauelemente um Mikrofluidik-Elemente oder externe Optik erweitert werden, um für eine bestimmte Anwendung einsetzbar zu sein.

Am konferenzbegleitenden Stand des Fraunhofer FEP werden wir neben den Ergebnissen zur UV-OLED weitere Demonstratoren wie z. B. unsere neuesten OLED Mikrodisplays und flexible OLED auf unterschiedlichen Substraten zeigen.

Neben der Ausstellung wird Dr. Michael Thomschke einen Vortrag während der Konferenz am 3. Dezember, von 15.45 Uhr bis 16.05 Uhr zum Thema „OLED on Silicon for Sensor Applications“ mit den neuesten Erkenntnissen zu OLED Bauelementen für Lab-on-Chip Anwendungen in Snow Hall B halten.

Über Fraunhofer FEP:
Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl und Plasmatechnik FEP bearbeitet innovative Themenstellungen auf den Arbeitsgebieten der Vakuumbeschichtung, der Oberflächenbearbeitung und -behandlung mit Elektronen und Plasmen und der organischen Halbleiter. Grundlage dieser Arbeiten sind die Kernkompetenzen Elektronenstrahltechnologie, Sputtern und Plasma-aktivierte sowie PECVD Hochratebeschichtung, Technologien für organische Elektronik und IC-/Systemdesign.

Fraunhofer FEP bietet damit ein breites Spektrum an Forschungs-, Entwicklungs- und Pilotfertigungsmöglichkeiten, insbesondere für Behandlung, Sterilisation, Strukturierung- und Veredelung von Oberflächen sowie für OLED-Mikrodisplays, organische und anorganische Sensoren, optische Filter und flexible OLED-Beleuchtung.

Ziel ist, das Innovationspotenzial der Elektronenstrahl-, Plasmatechnik und organischen Elektronik für neuartige Produktionsprozesse und Bauelemente zu erschließen und es für unsere Kunden nutzbar zu machen.

Das COMEDD (Center for Organics, Materials and Electronic Devices Dresden) führt seit 2014 alle bisherigen Aktivitäten im Bereich der organischen Elektronik unter dem Dach des Fraunhofer FEP weiter.

Weitere Informationen sind erhältlich:
Fraunhofer FEP
Ines Schedwill
Leiterin Marketing
Maria-Reiche-Str. 2
01109 Dresden
Tel.: +49 (0) 351/8823-238
Fax: +49 (0) 351/8823-394
e-mail: Ines.Schedwill@comedd.fraunhofer.de

Annett Arnold
Leiterin Unternehmenskommunikation
Winterbergstr. 28
01227 Dresden
Internet: www.fep.fraunhofer.de
Tel.: +49 (0) 351/2586-452
Fax: +49 (0) 351/2586-105
e-mail: Annett.Arnold@fep.fraunhofer.de


Weitere Informationen:

http://s.fhg.de/4VG

Annett Arnold | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften