Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Zünglein an der Waage: Neue Denkanstöße für individuelle Krebstherapien

01.03.2013
WissenschafterInnen um Manuela Baccarini an den Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien haben einen neuen Mechanismus entdeckt, über den zwei Signalwege zur Steuerung von Zellwachstum und -überleben miteinander verknüpft sind und gemeinsam reguliert werden.
Wenn die Balance zwischen diesen Signalen aus dem Gleichgewicht kommt, kann das zum unkontrollierten Zellwachstum und möglicherweise zur Krebsentstehung führen. Die Erkenntnisse, die aktuell im Fachjournal "Molecular Cell" erscheinen, liefern neue Ansatzpunkte für "personalisierte Medizin", bei der Krebspatienten eine individuell maßgeschneiderte Therapie erhalten.

Zellen müssen Umweltsignale wahrnehmen und darauf reagieren
Die Grundbausteine unseres Körpers, unsere Zellen, müssen eine Vielzahl von Signalen aus ihrer Umwelt wahrnehmen und verarbeiten. Die Wahrnehmung solcher Signale erfolgt über Rezeptoren an der Zelloberfläche, die wiederum spezifische Signaltransduktionswege in der Zelle auslösen. Diese Signalwege teilen den Zellen unter anderem mit, ob sie wachsen und sich vermehren sollen oder ob ein Angriff von Bakterien oder Viren abgewehrt werden muss. Im ERK-Signalweg, zum Beispiel, werden die Proteine RAS, RAF, MEK und ERK nacheinander aktiviert und regulieren dann die Embryonalentwicklung, die Differenzierung von Zellen, sowie das Zellwachstum und auch den programmierten Zelltod.
Signalwege für Zellwachstum werden durch MEK1 ausbalanciert
Von dem Protein MEK gibt es zwei Schwesterformen, MEK1 und MEK2. Vor einigen Jahren zeigte Baccarinis Team, dass MEK1 und MEK2 einen Komplex bilden, der nur inaktiviert werden kann, wenn beide Partner gemeinsam vorliegen. Wenn MEK1 zerstört wird, kann MEK2 nicht mehr abgeschaltet werden und der ERK-Signalweg bleibt kontinuierlich aktiv, was unkontrolliertes Zellwachstum auslösen kann. Um den MEK1/2 Komplex und somit den kompletten Signalweg abzuschalten, muss MEK1 durch aktives ERK an einer bestimmten Stelle markiert werden.
"Unsere neuen Ergebnisse haben nun gezeigt, dass diese Markierung von MEK1 auch notwendig ist, um einen weiteren Signalweg, den PI3K/AKT-Weg, der Zellwachstum und -überleben reguliert, auszuschalten", sagt die Molekularbiologin Manuela Baccarini über die Studie, die im Rahmen des Doktoratskollegs "Molecular mechanisms of cell signaling" durchgeführt wurde. Dafür muss MEK1 an das Protein PTEN binden und dieses zur Zellmembran führen, wo es die Produktion des Signalstoffes PIP3 stoppt. "MEK1 balanciert somit zwei Signalwege aus, die Wachstum und Überleben von Zellen bestimmen. Ist MEK1 zerstört, bleibt nicht nur der ERK-Signalweg angeschaltet, sondern auch der PI3K/AKT-Weg: Gemeinsam fördern diese Signalwege unkontrolliertes Zellwachstum", erklärt Baccarini weiter.

Denkanstoß für "personalisierte Medizin"
Diese bedeutende Rolle von MEK1 erklärt auch, warum Krebsmedikamente, die den ERK-Signalweg blockieren, oft nach einiger Zeit nicht mehr wirksam sind. Baccarini erläutert: "Nun können wir besser verstehen, warum zum Beispiel Tumorzellen, die ERK-Inhibitoren bekommen, nach einer Weile eine Resistenz gegen diese Medikamente entwickeln und wieder wachsen. Da es kein markiertes MEK1 gibt, kann der PI3K/AKT Weg nicht abgeschaltet werden und fördert das Tumorwachstum."

Schema der Interaktion von ERK und PI3K/AKT. Die Abschaltung des einen Signalweges führt zur Überaktivierung des anderen.
MFPL/Baccarini Lab

Diese Entdeckung stellt einen Ansatz für "personalisierte Medizin" dar, bei der Patienten eine individualisierte Therapie erhalten. Denn in Patienten mit normal funktionierendem PTEN kann die Inhibierung des ERK-Signalweges zur Überaktivierung des PI3K/AKT-Weges führen. Diese müssten also gleichzeitig PI3K/AKT Inhibitoren erhalten. "Unsere Ergebnisse zeigen, dass man zelluläre Signalwege nicht in Isolation betrachten kann, sondern als das komplexe Netzwerk, das sie darstellen. Dessen Verlinkungen zu verstehen ist essentiell, um neue Medikamente zum Beispiel zur Krebsbehandlung zu entwickeln, aber auch um bestehende Therapien so zu optimieren, damit Patienten die effektivste Behandlung mit den wenigsten Nebenwirkungen erhalten", sagt Baccarini abschließend.

Über die Max F. Perutz Laboratories
Die Max F. Perutz Laboratories (MFPL) sind ein gemeinsames Forschungs- und Ausbildungszentrum der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL sind rund 530 WissenschafterInnen in über 60 Forschungsgruppen mit Grundlagenforschung im Bereich der Molekularbiologie beschäftigt.

Publikation in "Molecular Cell":
Katarina Zmajkovicova, Veronika Jesenberger, Federica Catalanotti, Christian Baumgartner, Gloria Reyes, and Manuela Baccarini: MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. In: Molecular Cell (2013).
DOI: http://dx.doi.org/10.1016/j.molcel.2013.01.037

Wissenschaftlicher Kontakt:
Ao. Univ.-Prof. Dr. Manuela Baccarini
Max F. Perutz Laboratories
Department für Mikrobiologie, Immunbiologie und Genetik
Universität Wien
1030 Wien, Dr.-Bohr-Gasse 9
T +43-1-4277-546 07
manuela.baccarini@univie.ac.at

Rückfragehinweis:
Dipl.-Ing. (FH) Georg Bauer
Max F. Perutz Laboratories
Communications
1030 Wien, Dr.-Bohr-Gasse 9
T +43-1-4277-240 03
georg.bauer@univie.ac.at

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie