Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zuckerwettstreit im Maisfeld

25.09.2014

Viele Getreidearten und Gräser binden Zucker an ihre Abwehrstoffe, sogenannte Benzoxazinoide, und schützen sich so davor, von ihren eigenen Pflanzenschutzmitteln vergiftet zu werden. Sobald aber ein Insekt die Pflanze anknabbert, spaltet ein Enzym aus der Pflanze den Zucker ab und aktiviert das Gift.

Wissenschaftler am Max-Planck-Institut für chemische Ökologie in Jena haben nun entschlüsselt, warum diese Pflanzenabwehr bei Raupen der Gattung Spodoptera versagt. Die Eulenfalterraupen binden das Zuckermolekül verkehrt herum an den Abwehrstoff von Maispflanzen und machen das Insektengift so unschädlich.


Der Heerwurm Spodoptera frugiperda ist einer der wichtigsten Maisschädlinge in Nord- und Südamerika.

Anna Schroll


Felipe Wouters und Daniel Giddings Vassão im Analytik-Labor: Die Wissenschaftler identifizierten den Stoffwechselprozess, der Spodoptera-Raupen unempfindlich gegen das Pflanzengift macht.

Anna Schroll

Pflanzen und Insekten speichern Zuckerverbindungen als Energievorräte. Zucker können jedoch auch Teil eines tödlichen Wettkampfs zwischen der Pflanze und ihrem Schädling werden, wie Wissenschaftler am Max-Planck-Institut für chemische Ökologie in Jena jetzt herausgefunden haben. Viele Getreidearten und Gräser binden Zucker an ihre Abwehrstoffe, sogenannte Benzoxazinoide, und schützen sich so davor, von ihren eigenen Pflanzenschutzmitteln vergiftet zu werden.

Sobald aber ein Insekt die Pflanze anknabbert, spaltet ein Enzym aus der Pflanze den Zucker ab und aktiviert das Gift. Die Max-Planck-Wissenschaftler haben nun entschlüsselt, warum diese Pflanzenabwehr bei Raupen der Gattung Spodoptera versagt. Die Forscher fanden im Kot der Insektenlarven, die als Maisschädlinge erheblichen wirtschaftlichen Schaden verursachen, Moleküle der ursprünglichen pflanzlichen Verbindung, die sich lediglich durch eine räumlich anders angebundene Zuckergruppe unterscheiden.

Im Gegensatz zum Pflanzenabwehrstoff kann die neue Verbindung nicht mehr enzymatisch in ein Gift umgewandelt werden. Die verkehrte Wieder-Anbindung des Zuckers stellt somit eine sehr einfache, aber effektive Entgiftungsstrategie dar, mit deren Hilfe Eulenfalterraupen als Landwirtschaftsschädlinge so erfolgreich werden konnten. (Angewandte Chemie - International Edition, September 2014, doi: 10.1002/ange.201406643).

Viele Pflanzen verteidigen sich gegen Insektenfraß, indem sie Gifte oder Abwehrstoffe produzieren. Allerdings haben sich viele Insekten an die pflanzliche Verteidigung angepasst und können sich ungehindert an vermeintlich giftigen Pflanzenblättern gütlich tun. Die Überwindung der Pflanzenabwehr kann darin bestehen, dass die schädlichen Stoffe aus der Pflanzennahrung vom Insekt rasch ausgeschieden, im Gewebe eingelagert oder entgiftet werden.

Durch solche Anpassungen ist im Laufe der Evolution nicht nur die enorme Insektenvielfalt entstanden, es haben sich auch viele, auf bestimmte Pflanzen spezialisierte Schädlingsarten entwickelt, die jedes Jahr unsere landwirtschaftliche Produktion gefährden.

Als weltweit großflächig angebautes Getreide wird Mais von vielen Schädlingen bedroht, darunter auch Raupen der Gattung Spodoptera. In Nord- und Südamerika ist der Heerwurm Spodoptera frugiperda ein wichtiger Maisschädling, der beträchtlichen Schaden verursacht. Mais wehrt sich wie viele andere Gräser und Getreide mit Chemie.

Die Blätter junger Maispflanzen enthalten große Mengen eines Benzoxazinoids namens (2R)-DIMBOA-Glycosid. Die Pflanzen produzieren zusätzlich ein Enzym, das im Raupendarm aktiv wird und dort das DIMBOA-Glycosid spaltet und den Zucker freisetzt. Das freie DIMBOA-Molekül, das bei der Spaltung entsteht, hat auf viele Schädlinge eine toxische Wirkung: Die Schädlinge sterben oder hören auf zu wachsen. Der Heerwurm ist jedoch immun gegen dieses Gift.

Forscher um Daniel Giddings Vassão und Jonathan Gershenzon aus der Abteilung Biochemie am Max-Planck-Institut für chemische Ökologie sind jetzt einer bisher unbekannten Entgiftungsstrategie dieser Schädlinge auf die Schliche gekommen. Raupen des Heerwurms und zweier weiterer Spodoptera-Arten haben in ihrem Darm ein Enzym, das die Wiederanbindung des Zuckers an das giftige DIMBOA-Molekül katalysiert.

Um eine erneute Abspaltung auszuschließen, wird der Zuckerrest allerdings umgedreht gebunden. Dies fanden die Wissenschaftler bei der chemischen Analyse von Raupenkot heraus. Modernste und hochsensible Verfahren der Massenspektrometrie und Kernresonanzspektroskopie ergaben, dass das Benzoxazinoid aus dem Raupenkot nicht mehr der Substanz aus den Maisblättern entsprach und es sich vielmehr um eine Art Spiegelbild handelt (nunmehr (2S)-DIMBOA-Glycosid genannt).

„Wir waren überrascht, dass der Unterschied lediglich in der geänderten dreidimensionalen Anbindung der Zuckergruppe besteht. Entscheidend ist dabei, dass das pflanzliche Enzym den Zucker nicht mehr abspalten kann und somit das giftige DIMBOA auch nicht mehr zum Einsatz kommt. Die Eleganz dieses Mechanismus besteht in seiner Einfachheit, aber er schützt die Raupen davor, vergiftet zu werden“, fasst Felipe Wouters, der als Doktorand am Institut die Untersuchungen durchgeführt hat, die Ergebnisse zusammen.

Wie sein Kollege Daniel Giddings Vassão kommt er aus Brasilien, wo der Heerwurm vor dem Anbau von Bt-Mais große Teile der Maisernte vernichtete. Wie die Nachrichtenagentur Reuters diesen Sommer berichtete, beobachten brasilianische Farmer jedoch eine zunehmende Resistenz des Schädlings gegenüber Bt, ein Grund mehr, das Verständnis ihrer natürlichen Anpassungs-mechanismen an die pflanzliche Abwehr zu vertiefen. „Wenn wir mehr darüber erfahren, wie ein Darm-Enzym aus dem Heerwurm einen so gefährlichen Schädling gemacht hat, können wir dieses Wissen vielleicht zu unserem Vorteil einsetzen, indem wir beispielsweise das Enzym deaktivieren und die natürliche Maisabwehr vollständig wiederherstellen“, meint Daniel Giddings Vassão.

Pflanzen-Insekten-Wechselwirkungen beinhalten sehr komplexe und dynamische Stoffwechselprozesse. Bei der Analyse und Identifizierung von chemischen Verbindungen, die dabei eine Rolle spielen, wird die dreidimensionale Anordnung der Moleküle oft übersehen. „Dabei birgt die räumliche Struktur der Verbindungen hier den Schlüssel zum Erfolg“, betont Jonathan Gershenzon, Direktor der Abteilung Biochemie. „Wir Menschen können von diesen Insekten eine ganze Menge über das chemische Konzept der Chiralität lernen, nämlich dass eine Verbindung und ihr Spiegelbild völlig unterschiedliche biologische Wirkungen haben, obwohl ihre Atome an denselben Stellen miteinander verbunden sind“.

Der Begriff „Chiralität“ wird vom griechischen Wort für Hand abgeleitet und bezieht sich auf die Entsprechung des Prinzips in der Anatomie, nämlich der spiegelbildlichen Anordnung der rechten und der linken Hand. Einen traurigen Bekanntheitsgrad erlangte die unterschiedliche Wirkungsweise von Spiegelmolekülen durch die katastrophalen Folgen des Beruhigungsmittels Contergan zu Beginn der 60er Jahre:

Der Wirkstoff Thalidomid lag in diesem Medikament in zwei Versionen vor, als (S)- sowie als (R)-Thalidomid. Wissenschaftler gingen bei der Klärung der fatalen Wirkung davon aus, dass nach Einnahme durch schwangere Frauen nur das (S)-Thalidomid Missbildungen bei Ungeborenen auslöste, während das (R)-Thalidomid die gewünschte beruhigende Wirkung hatte.

Die Wissenschaftler wollen jetzt die Enzyme und die beteiligten Gene identifizieren, die für den Entgiftungsprozess in Spodoptera-Raupen verantwortlich sind. Darüber hinaus werden sie nach ähnlichen Enzymen in verwandten Arten suchen und diese miteinander vergleichen. DIMBOA ist nur eine Verbindung aus einer Vielzahl toxischer Benzoxazinoide, die in Gräsern zu finden sind. Ziel der Forschung ist ein umfassendes Bild des Benzoxazinoid-Stoffwechsels in Insekten, das dazu beitragen soll, bessere Strategien zu entwickeln, um Ernteschädlinge in Schach zu halten. [AO]

Originalveröffentlichung:
Wouters, F.C., Reichelt, M., Glauser, G., Bauer, E., Erb, M., Gershenzon, J., Vassão, D.G. (in press). Reglucosylation of the benzoxazinoid DIMBOA with inversion of stereochemical configuration is a detoxification strategy in lepidopteran herbivores. Angewandte Chemie − International Edition. DOI: 10.1002/anie.201406643
http://dx.doi.org/10.1002/ange.201406643

Weitere Informationen:
Daniel Giddings Vassão, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel. +49 3641 57-1333, E-Mail vassao@ice.mpg.de
Jonathan Gershenzon, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel. +49 3641 57-1300, E-Mail gershenzon@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, Tel.: +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1166.html?&L=1

Angela Overmeyer | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise