Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Zucker in den Wein kommt

20.09.2010
Dass Pflanzen, die viel Zucker speichern, süß schmecken, ist bekannt. Neu ist hingegen, dass diese Pflanzen auch mehr Ertrag bringen und sich als deutlich resistenter gegen Kälte erweisen. Warum das so ist, haben Wissenschaftler der Universitäten Würzburg und Kaiserslautern jetzt genauer untersucht.

Winzern und Weinliebhabern ist der Effekt zumindest vom Geschmack her vertraut: Je mehr Zucker eine Weintraube in ihren Speichern, den sogenannten Vakuolen, trägt, desto süßer schmeckt sie und desto höher ist der Oechsle-Grad.

Das ist aber nur ein Effekt prall mit Zucker gefüllter Vakuolen. Wie der Kaiserslauterner Biologe und Stoffwechselexperte Professor Ekkehard Neuhaus vor kurzem entdeckte, sorgt Zucker auch dafür, dass Pflanzen plötzlich einbrechende Kälteperioden besser überleben können als zuckerarme Verwandte. Außerdem wachsen sie stärker und tragen mehr Frucht – was wiederum den Winzer freuen dürfte.

Bei der Suche nach den molekularen Gründen dieser Effekte tat sich Neuhaus mit Rainer Hedrich zusammen. Hedrich ist Inhaber des Lehrstuhls für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg und gefragter Experte auf dem Gebiet der Elektrophysiologie. Seit mehr als 20 Jahren zählt er zu den weltweit bedeutendsten Wissenschaftlern, wenn es um die Erforschung des Membrantransports geht.

Überregionale Forschergruppe untersucht den Zuckertransport

In einer von der Deutschen Forschungsgemeinschaft (DFG) geförderten überregionalen Forschergruppe untersuchten Neuhaus, Hedrich sowie Arbeitsgruppen aus Erlangen und Heidelberg die Bedeutung von Zuckertransportern und den daran beteiligten Protonenpumpen für das Überleben und den Ertrag der Pflanze. „Für Liebhaber von fruchtigen Spätlesen könnte man die Frage auch so formulieren: ‚Wie kommen Zucker und Säure in den Wein‘“, so Hedrich.

Was es mit Transportern, Protonenpumpen, Zucker und Säure auf sich hat? „Die Zusammensetzung und die Menge der Inhaltsstoffe einer Vakuole hängen davon ab, welche Transport-Proteine in der Hüllmembran dieser Vakuole sitzen“, erklärt Hedrich. Wichtige Vertreter dieser Transporter sind sogenannte Protonenpumpen, denn sie treiben den Speicherprozess an.

Wie der Zucker in die Speicher gelangt

Unter Aufwendung von Energie schaffen diese Pumpen Protonen in die Vakuole hinein und sorgen so dafür, dass die Vakuole viel mehr Protonen enthält als der sie umgebende Zellsaft. In diesem Konzentrationsgefälle steckt Energie – die Protonen drängen mit aller Macht wieder hinaus aus der überfüllten Vakuole, ähnlich wie Luft aus einem prall aufgeblasenen Ballon. Dies ist der Ansatzpunkt für die Zuckertransporter, die in der Vakuolenmembran sitzen: Sie nutzen den energetisch begünstigten Ausstrom von Protonen, um nach dem Austauschprinzip gleichzeitig Zucker in die Vakuole zu schaffen. Zwei solcher Protonen-Pumpen hat Hedrich erst vor kurzem gemeinsam mit der Professorin Karin Schumacher von der Uni Heidelberg untersucht.

Über kältetolerante Mutanten zum Zuckertransporter

Obwohl das Phänomen des Protonen-getriebenen Zuckertransports schon in den 70er-Jahren entdeckt wurde, blieb die molekulare Natur des Transportproteins bis vor kurzem im Dunkeln. Ein überlegter Glücksgriff sorgte jetzt für Erhellung: Bei der Untersuchung einer bisher unbekannten Genfamilie der Modellpflanze Arabidopsis thaliana – der Ackerschmalwand – entdeckte Neuhaus, dass die Pflanze plötzlich einbrechende Kälteperioden besser überleben kann, wenn Kopien bestimmter Gene in den Transportproteinen eine verstärkte Aktivität zeigen. Der Grund dafür: Die genetisch optimierte Pflanze speichert verstärkt Glukose in der Vakuole und das wirkt wie ein Frostschutzmittel.

An diesem Punkt kam Rainer Hedrich ins Spiel, der mit der Analyse von Kanälen und Pumpen mittels hochempfindlicher biophysikalischer Verfahren bestens vertraut ist. Noch während seiner Doktorarbeit im Labor des Nobelpreisträgers Professor Erwin Neher war Hedrich 1984 mit Hilfe der sogenannten Patch-Clamp-Technik erstmals der funktionelle Nachweis pflanzlicher Ionenkanäle gelungen. Mit exakt dieser Technik konnten er und seine Mitarbeiter nun auf isolierten Vakuolen zeigen, dass Neuhaus tatsächlich den lang gesuchten Protonen-getriebenen Zuckertransporter aufgespürt hatte.

Die Zeitschrift „Plant Physiology“ hat in ihrer Online-Ausgabe vom 13. August über diese Arbeit berichtet. Die „Fakulty of 1000“ stuft diese Publikation als „Must read“, also als „muss man lesen“, ein.

Weitere ungeklärte Fragen

Natürlich bleiben auch nach dieser Entdeckung weitere Fragen bestehen. Ekkehard Neuhaus will nun herausfinden, warum die Kälte-optimierten Arabidopsis-Pflanzen mehr Ertrag geben und ob sich dieser Ansatz auch auf Nutzpflanzen ausdehnen lässt. Im Zentrum von Hedrichs Interesse stehen die Fragen: „Woran erkennt das Transportprotein, welchen Zucker es transportieren soll?“ und „Wie holt die Pflanzenzelle den Zucker bei Bedarf wieder aus ihrem Zentralspeicher heraus?“.

Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signalling and Seed Yield in Arabidopsis. Karina Wingenter, Alexander Schulz, Alexandra Wormit, Stefan Wic, Oliver Trentmann, Imke I. Hoermiller, Arnd G. Heyer, Irene Marten, Rainer Hedrich and Ekkehard Neuhaus. Plant Physiology, DOI:10.1104/pp.110.162040

Kontakt: Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Molekulare Pflanzenphysiologie und Biophysik) der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie