Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zucker im Windkanal

01.10.2015

Wissenschaftler können mit einem neuen Verfahren erstmals komplexe Zuckermoleküle sequenzieren

Einem Berliner Forscherteam um Kevin Pagel von der Freien Universität Berlin und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft und Peter Seeberger vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und der Freien Universität Berlin haben die Analyse von Kohlenhydraten entscheidend verbessert.

Mit dem von Pagel und Seeberger entwickelten Verfahren können komplexe Zucker jetzt auch sequenziert werden. Es ist nun möglich schneller und einfacher geringste Verunreinigungen zu erkennen und damit die Qualitätskontrolle von synthetisch hergestellten Kohlenhydraten zu ermöglichen.

Das Verfahren ist wichtig für die Entwicklung neuartiger Impfstoffe, Wirkstoffe und Diagnostika. Für die Glykobiologie ist dies ein ähnlicher Durchbruch wie die DNA-Sequenzierung für die Genetik.

Kohlenhydrate sind wesentlich komplizierter aufgebaut als die DNA oder Proteine. Während DNA-Moleküle aus vier Grundbausteinen und Proteine aus 20 Aminosäuren aufgebaut sind, existieren in der Natur mehr als 100 Zuckerbausteine.

Darüber hinaus sind die DNA-Grundbausteine und Aminosäuren ausschließlich kettenförmig aneinandergefügt. Zucker können aber auch Verzweigungen und räumlich unterschiedliche Anordnungen (Anomere) bilden. Fast alle Zellen sind von einem Zuckermantel umgeben, der für Immunantworten, für die Identifizierung von Zellen untereinander und die Befruchtung von Eizellen verantwortlich ist. Zucker spielen also eine sehr wichtige Rolle in vielen natürlichen Abläufen.

Die ungeheure Vielfalt der aus Kohlenstoff, Wasserstoff und Sauerstoff bestehenden Zuckermoleküle in der Natur kann aber für Chemiker bei der Forschung zum Problem werden, wenn sie spezifische Moleküle finden oder herstellen wollen. Denn einzelne Zuckerbausteine können auf sehr viele verschiedene Arten aneinander binden.

Schon einfache Zuckermoleküle haben oft genau die gleiche Anzahl von Atomen, besitzen also die gleiche Masse; nur der Winkel einer Bindung unterscheidet sie. Diese anscheinend gleichen Moleküle, sogenannte Isomere, sind aber sehr unterschiedlich biologisch aktiv. Ein Beispiel sind Glukose und Galaktose. Die Summenformel ist identisch, C6H12O6, die Moleküle und deren biologische Wirkung sind es aber nicht.

Chemiker behelfen sich bei der Identifikation von Molekülen immer mit Tricks, denn auf der atomaren Ebene können die meisten Moleküle nicht beobachtet werden. Zum Beispiel ermitteln sie die Masse von Molekülen, untersuchen ihre magnetischen Eigenschaften oder das Licht, das sie aussenden, wenn die Substanzen verglühen.

Damit kann man viele Verbindungen gut aufklären, aber all das hilft nicht, wenn es sich um Zucker-Isomere handelt, bei denen nur die Anordnung der Atome unterschiedlich ist. Es gibt drei Arten solcher Unterschiede in Zuckern aus der gleichen Anzahl von Atomen: Komposition, Konnektivität und Konfiguration, und alle drei waren bisher für Forscher nur mit sehr hohem Zeit und Materialaufwand und mit großen Molekülmengen feststellbar.

Die Berliner und Potsdamer Wissenschaftler haben dieses knifflige Problem jetzt durch die Kombination verschiedener Methoden gelöst: Sie nutzen die unterschiedliche Form der Moleküle. Die unterschiedlichen Formen erzeugen in einem gasgefüllten Raum, durch den die Moleküle geschickt werden, unterschiedlich starken Widerstand, vergleichbar mit dem sogenannten CW-Wert in einem Windkanal.

Pagel und seine Kollegen kombinierten diese Messung der Ionenmobilität mit einer Messung der Molekülmassen. Dann glichen sie beide Informationen gegeneinander ab, um Unterschiede in der Komposition, Konnektivität und Konfiguration zu finden. Große Moleküle werden dabei in Bestandteile zerlegt, die Form der Bestandteile wird durch die Aufspaltung jedoch nicht verändert, so dass die Summe der Eigenschaften der Bestandteile das große Molekül genau beschreibt.

Kombiniert mit einer Datenbank, die derzeit erstellt und auch von anderen Wissenschaftlern bestückt werden soll, lässt sich das Analyseverfahren so auf eine immer größere Anzahl von Molekülen anwenden. Ist ein Molekül einmal systematisch identifiziert worden, kann es in Zukunft auch durch automatisierte Verfahren erkannt werden.

Praktischen Nutzen hat das neue Verfahren für die Qualitätskontrolle synthetisch hergestellter Zucker. Syntheseroboter reihen dabei Moleküle wie Perlen an einer Schnur auf. Bisher war es nur möglich, Unreinheiten zu entdecken, wenn sie mindestens fünf Prozent ausmachten. Mit der neuen „Windkanalmethode“ konnte diese Nachweisgrenze auf 0,1 Prozent verringert werden.

„Die neue Methode ist schnell, zuverlässig und sehr sensitiv. Dadurch wird die Glykan-Sequenzierung einen riesigen Schub bekommen – ähnlich wie in der DNA Forschung, auch dort brachte die Gensequenzierung den Durchbruch“, erklärt Seeberger.

Die Glykobiologie beschäftigt sich mit biologisch aktiven Kohlehydraten. Sie ist eines der aussichtsreichsten Gebiete der Chemie und der Wissenschaft allgemein, Berlin ist weltweit eines der wichtigsten Zentren dieses Forschungsgebietes.

Bis 1974 wurden sieben Nobelpreise in den Glykowissenschaften verliehen, dann jedoch wurde es ruhig um die Zucker, denn die Untersuchungsmethoden wurden nicht im gleichen Maß wie in der Genetik weiterentwickelt. Durch die neuen Ergebnisse hat das Forschungsgebiet einen weiteren großen Schritt zur technischen Nutzung gemacht.

Ansprechpartner

Prof. Dr. Peter H. Seeberger
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9301

Fax: +49 331 567-9102

E-Mail: peter.seeberger@mpikg.mpg.de


Prof. Dr. Kevin Pagel
Institut für Chemie and Biochemie

Freie Universität Berlin
Telefon: +49 30 838-72703

E-Mail: kevin.pagel@fu-berlin.de


Originalpublikation

J. Hofmann, H. S. Hahm, P. H. Seeberger & K. Pagel

Identification of carbohydrate anomers using ion mobility–mass spectrometry

Nature, 1 October 2015 (doi:10.1038/nature15388)

Prof. Dr. Peter H. Seeberger | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Weitere Informationen:
https://www.mpg.de/9673921/zucker-sequenzierung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics