Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zucker gegen gefährliche Bakterien

26.05.2011
Ein möglicher Impfstoff gegen einen Antibiotika-resistenten Erreger von Krankenhaus-Infektionen lässt sich synthetisch herstellen

Gegen den Erreger einer der häufigsten und gefährlichsten Krankenhaus-Infektionen gibt es nun einen erfolgversprechender Impfstoffkandidaten. Ein internationales Team um Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam hat auf der Basis eines Kohlehydrats einen Impfstoff gegen das Bakterium Clostridium difficile entwickelt, das vor allem in Krankenhäusern gravierende Darminfektionen auslöst.


Stimuliert das Immunsystem: Auf Basis eines Sechsfachzuckers entwickelten Potsdamer Chemiker einen Impfstoff gegen das Bakterium Clostridium difficile, das in Krankenhäusern schwere Darminfektion verursacht. © MPI für Kolloid- und Grenzflächenforschung

Der zuckerbasierte Impfstoff rief bei Mäusen eine spezifische und umfassende Immunantwort hervor. Die Forscher haben zudem einen deutlichen Hinweis gefunden, dass die Substanz auch das menschliche Immunsystem stimulieren könnte, Antikörper gegen das Bakterium zu produzieren.

Clostridium difficile ist zu einer tödlichen Gefahr geworden: Vor etwa acht Jahren tauchte in den USA und einigen westeuropäischen Staaten ein hochvirulenter und gegen Antibiotika resistenter Stamm des sporenbildenden Bakteriums auf. Seither bedroht es vor allem in Krankenhäusern Patienten, die mit Antibiotika behandelt werden oder die wie etwa Krebs- oder HIV-Patienten ein geschwächtes Immunsystem haben. Während C. difficile den Darm von höchstens vier Prozent der gesunden Menschen besiedelt, ist es in 20 bis 40 Prozent der Patienten in Krankenhäusern zu finden. Wenn andere Bakterien der Darmflora durch Antibiotika zurückgedrängt werden, kann sich das Stäbchenbakterium rasant vermehren. Es produziert Giftstoffe, die zu Durchfall und einer Darmentzündung führen, häufig mit tödlichen Folgen. Stets machen sie eine sehr aufwendige Nachbehandlung der Patienten nötig. Der neue, hochvirulente Erreger produziert sogar rund 20mal mehr Toxine und deutlich mehr Sporen als die zuvor bekannten Erreger.

Ein Kohlehydrat in der Zellwand des Bakteriums haben die Forscher um Peter H. Seeberger am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam nun zum Angriffspunkt für einen möglichen Impfstoff genommen. „In ersten Tests hat sich das zuckerbasierte Antigen, das wir dabei hergestellt haben, auch bereits als sehr aussichtsreich erwiesen“, sagt Peter H. Seeberger, Direktor am Potsdamer Max-Planck-Institut.

Wesentlicher Bestandteil des Antigens ist ein Sechsfachzucker, für den die Chemiker des Teams zunächst eine Synthese entwickelten. Als Bausteine für den Mehrfachzucker verwendeten sie vier verschiedene Einfachzucker, die sie auf einem effizienten Weg so miteinander reagieren ließen, dass genau das Molekül mit der gewünschten Anordnung der Einfachzucker entstand. „Die Synthese von komplexen Mehrfachzuckern stellt immer noch eine Herausforderung dar“, sagt Peter H. Seeberger. Sie ist nicht zuletzt deshalb schwierig, weil Zuckermoleküle sich an mehreren möglichen Stellen miteinander verbinden können. Dass sich die Ausgangszucker genau an den gewünschten Punkten miteinander verbinden steuerten die Chemiker, indem sie die anderen Reaktionsorte gezielt blockierten.

Das Immunsystem von Mäusen reagiert deutlich
Den Sechsfachzucker kombinierten die Forscher nun mit dem Protein CRM 197, das in vielen Impfstoffen zum Einsatz kommt. Zucker alleine bewirken als Antigene nämlich keine umfassende Immunantwort. Nur in Verbindung mit einem anderen Antigen kann sich das Immunsystem ausreichend gegen eine Infektion mit C. difficile wappnen. Das chemische Zucker-Eiweiß-Konstrukt, Impfstoffforscher sprechen von einem Konjugat, rief in Tests an zwei Mäusen dagegen eine umfassende Immunantwort hervor, nachdem die Tiere im Abstand von zwei Wochen drei Mal mit der Substanz geimpft wurden. „Dass die Mäuse dabei auch Antikörper gegen das Kohlehydrate produzierten, ist bereits ein Erfolg“, sagt Peter H. Seeberger: „Denn nicht alle Kohlenhydrate lösen die Bildung von Antikörpern aus.“ Die Antikörper, die die Mäuse dabei produzierten, banden zudem ausschließlich an den Zucker. Das Antigen kann somit keine Autoimmunerkrankung hervorrufen.

Das Forscherteam wies zudem nach, dass Antikörper gegen den Sechsfachzucker auch Teil der menschlichen Immunantwort sind. Im Stuhl von Patienten, die mit C. difficiles infiziert waren, fanden sie nämlich Antikörper gegen den Zucker. „Wir können also erwarten, dass auch das menschliche Immunsystem bei einer Impfung Antikörper gegen den Zucker bildet“, so Seeberger. Mehr noch: „Da schon auf den natürlichen Zucker geringe Mengen Antikörper gebildet werden, hoffen wir, dass das synthetische Zucker-Eiweiß-Konjugat eine starke Antwort Antwort hervorruft.“

Zuckerbasierte Impfstoffe gegen zahlreiche Krankheitserreger
Der Impfstoffkandidat muss sich nun noch in weiteren Tests bewähren. Zunächst muss geklärt werden, ob er in Tieren eine Infektion wirksam verhindern kann. „Wenn diese Tests erfolgreich sind, wird es vermutlich noch ein bis zwei Jahre dauern, ehe der Impfstoff im Menschen getestet wird “, sagt Peter H. Seeberger.

Der mögliche Impfstoff gegen C. difficile enthält nicht den einzigen immunologisch wirksamen Zucker aus dem Labor Peter H. Seebergers. Gemeinsam mit seinen Kollegen entwickelt der Chemiker zuckerbasierte Impfstoffe gegen zahlreiche Krankheitserreger. „Die aktuelle Arbeit liefert daher auch einen Beleg für die Fortschritte in der Glykochemie und Glykobiologie“, so Seeberger, der für die Entwicklung eines Syntheseroboters für Kohlenhydrate im Jahr 2007 den Körber-Preis erhielt. Chemiker können immer mehr biologische Zuckermoleküle im Labor herstellen, so dass Biologen und Mediziner gezielt ihre Wirkungen erforschen können. Das macht Peter H. Seeberger optimistisch: „Diese Fortschritte werden zu Umwälzungen in den angrenzenden Forschungsgebieten wie der Immunologie, Biologie und Medizin führen.“

Ansprechpartner
Prof. Dr. Peter H. Seeberger
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9301
Fax: +49 331 567-9102
E-Mail: peter.seeberger@mpikg.mpg.de
Originalveröffentlichung
Matthias A. Oberli, Marie-Lyn Hecht, Pascal Bindschädler, Alexander Adibekian, Thomas Adam und Peter H. Seeberger
A Possible Oligosaccharide-Conjugate Vaccine Candidate for Clostridium difficile Is Antigenic and Immunogenic

Chemistry & Biology, 26. Mai 2011; DOI: 10.1016/j.chembiol.2011.03.009

Prof. Dr. Peter H. Seeberger | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4326269

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen