Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zucht-Jakobsmuscheln entwickeln eigene Gen-Merkmale

08.02.2017

Biologen der Universität Bielefeld veröffentlichen Analyse

Die Jakobsmuschel ist eine der größten essbaren Muscheln und gilt unter Gourmets als Delikatesse. Um den Bedarf nach den Muscheln zu decken, züchtet die Fischerei-Industrie die Schalentiere in Aquafarmen am Meer. Verhaltensökologen der Universität Bielefeld belegen in einer neuen Analyse: Die gezüchteten Muscheln haben eine eigene genetische Komposition ausgeprägt. Damit unterscheiden sie sich in ihren Gen-Merkmalen von natürlichen Vorkommen.


Für die Studie haben Bielefelder Forscher das Aussehen und das Erbgut von 180 Jakobsmuscheln von der Küste Nordirlands analysiert.

Foto: Agri-Food and Biosciences Institute, Belfast


Der Verhaltensökologe David Vendrami von der Universität Bielefeld untersucht, wie sich Populationen der Jakobsmuschel unterscheiden.

Foto: Universität Bielefeld

Die Biologen haben insgesamt neun Populationen der Jakobmuschel (Pecten maximus) an der Küste von Nordirland untersucht. Ihre Ergebnisse stellen sie am heutigen Mittwoch (8.2.2017) im Forschungsmagazin „Royal Society Open Science“ vor.

„Von den neun untersuchten Populationen der Jakobsmuschel unterscheidet sich nur eine genetisch deutlich von den anderen, und das ist die künstlich gezüchtete Art“, berichtet Joseph Hoffman, Leiter der Forschungsgruppe Molekulare Verhaltensökologie. Neuzüchtungen werden zum Beispiel in Gitterkäfigen an Küsten kultiviert.

Mitunter geraten junge Jakobsmuscheln durch das Gitter in die Freiheit und können so eigene Populationen bilden. Mit dem Begriff Population beschreiben Biologen eine Gruppe von Organismen einer Art, die gemeinsam in einem Gebiet lebt und durch Fortpflanzung über Generationen genetisch verbunden ist.

Die Forscher haben die genetische Architektur der Muschelpopulationen analysiert. „Die genetische Architektur ist das Gerüst der Erbanlagen, das bestimmt, welches äußere Erscheinungsbild ein Organismus annehmen kann – wie groß zum Beispiel eine Muschel werden kann oder ob sie eine rote Maserung ausbilden kann“, sagt David Vendrami. Der Doktorand untersuchte insgesamt 180 Muschel-Proben. Das Agri-Food and Biosciences Institute in Belfast (Nordirland) sammelte sie im Februar 2015 bei einer Exkursion an der nordirischen Atlantikküste.

Die Forschenden haben nicht nur belegt, wie sich Züchtungen auf die Vorkommen der Jakobsmuscheln auswirken. Ihre Untersuchung beweist auch, dass diese Muscheln ihre Form und innere Färbung sehr flexibel an ihre Umweltbedingungen anpassen, und zwar unabhängig davon, ob es sich um die Züchtung oder die acht natürlichen Populationen handelt. „Wir haben geprüft, inwieweit die Erbanlagen und das Erscheinungsbild zusammenhängen. Das ist aber sehr wahrscheinlich nicht der Fall. Die äußeren Eigenschaften der Muschel hängen sehr wahrscheinlich von der Umgebung ab“, sagt Vendrami.

Die Bielefelder Wissenschaftler haben die Untersuchung auch genutzt, um ein klassisches DNA-Analyse-Verfahren mit einem neuen Verfahren zu vergleichen. Das klassische Verfahren wertet wiederholte, kurze DNA-Abschnitte (Mikrosatelliten) aus, um Proben von verschiedenen Organismen zu vergleichen. Das moderne Verfahren (RAD-Sequenzanalyse) analysiert in kürzerer Zeit tausendfach mehr DNA-Abschnitte aus. „Das neue Verfahren übertrifft den klassischen Ansatz deutlich dabei, Unterschiede in den Populationen zu finden“, sagt David Vendrami.

In seiner künftigen Forschung gehen Hoffman, Vendrami und ihre Kollegen über Nordirland hinaus. Sie untersuchen Proben von der ganzen atlantischen Küste, von Norwegen bis Portugal, sowie aus dem Mittelmeer, um zu erfahren, wie die Jakobsmuscheln und andere Schalentiere in ihrem Wachstum auf unterschiedliche Umweltbedingungen reagieren.

Für die aktuelle Studie haben die Bielefelder Forscher mit einer Reihe von Partnern zusammengearbeitet: der University of Cambridge (England), der Universität Duisburg-Essen, der Forschungseinrichtung British Antarctic Survey (Cambridge), und dem Agri-Food and Biosciences Institute in Belfast (Nordirland).

David Vendrami ist Mitglied des Marie-Curie-Netzwerks „Calcium in a Changing Environment“ (CACHE, Kalzium in einer sich ändernden Umwelt). Darin untersuchen zehn Doktoranden aus ganz Europa in verschiedenen Disziplinen Europas kommerziell wichtigste Muschel-Arten. Das Netzwerk wird von der Europäischen Union gefördert. Die Marie-Curie-Netzwerke sind ein Teil des Rahmenprogramms für exzellente Forschung und Innovation der Europäischen Union.

Originalveröffentlichung:
David L. J. Vendrami, Luca Telesca, Hannah Weigand, Martina Weiss, Katie Fawcett, Katrin Lehman, Melody S. Clark, Florian Leese, Carrie McMinn, Heather Moore, Joseph I. Hoffman: RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. Royal Society Open Science, http://dx.doi.org/10.1098/rsos.160548, veröffentlicht am 8. Februar 2017

Kontakt:
David Vendrami, Universität Bielefeld
Fakultät für Biologie
Telefon: 0521 106-2725
E-Mail: david.vendrami@student.unife.it

Weitere Informationen:

https://ekvv.uni-bielefeld.de/blog/pressemitteilungen/entry/muscheln_meer_und_ma... Muscheln, Meer und Marineindustrie (Pressemitteilung vom 14.6.2016)

Jörg Heeren | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Biosciences DNA-Abschnitte Erbanlagen Muschel Muscheln Populationen Schalentiere

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie