Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zielgenaue Selbstorganisationsprozesse: Von polymeren Bausteinen zu hierarchischen Strukturen

29.02.2012
Selbstorganisierte Prozesse, in denen sich kleine molekulare Bausteine zu großen funktionsfähigen Strukturen, z.B. Zellen, zusammenschließen, sind für alle lebenden Organismen grundlegend.

Kann die Polymerchemie, dem Vorbild der Natur folgend, derartige Prozesse unter Laborbedingungen mit ebenso hoher Effizienz steuern? In der Online-Ausgabe des Wissenschaftsmagazins "Nature Communications" stellt eine Forschungsgruppe um Prof. Dr. Axel Müller (Universität Bayreuth) ein neuartiges Konzept vor, mit dem es gelingt, ausgehend von einzelnen Kunststoffmolekülen hierarchisch aufgebaute Großstrukturen zielgenau zu formen - und zwar so, dass diese Prozesse wie in der Natur von selbst ablaufen.


Kunststoffmoleküle (Triblockterpolymere), bestehend aus drei linear aufgebauten Abschnitten, bilden das Ausgangsmaterial für zielgenau gesteuerte Selbstorganisationsprozesse, aus denen verschiedenartige hierarchische Großstrukturen hervorgehen.
Grafik: Lehrstuhl MC II, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

An der internationalen Forschungsgruppe waren zusammen mit Prof. Dr. Axel Müller und seinen Mitarbeitern am Lehrstuhl für Makromolekulare Chemie II in Bayreuth auch Wissenschaftler in Aachen, Jena, Pau (Frankreich) und St. Petersburg (Russland) beteiligt. Der DFG-Sonderforschungsbereich 840 "Von partikularen Nanosystemen zur Mesotechnologie" an der Universität Bayreuth hat die Forschungsarbeiten gefördert.

Bei den Kunststoffmolekülen, die in den Bayreuther Laboratorien als Ausgangsmaterial verwendet wurden, handelt es sich um Triblockterpolymere. Diese bestehen aus drei linear aufgebauten Abschnitten, die kettenförmig aneinander hängen. Dabei besteht jeder Abschnitt aus 10 bis 500 gleichartigen Bausteinen. Entscheidend ist nun, dass die drei Abschnitte A, B und C hinsichtlich ihrer physikalischen Eigenschaften – insbesondere ihrer Löslichkeit – fundamental verschieden sind. Derartige Unterschiede sind beispielsweise dann gegeben, wenn es sich bei den drei Abschnitten um die Kunststoffe Polystyrol, Polybutadien und Polymethylmethacrylat handelt. "In der Natur kommen derartige Strukturen nicht vor", betont Prof. Dr. Axel Müller. "Denn ihre Bestandteile vertragen sich normalerweise nicht gut miteinander und wollen von sich aus keine chemischen Bindungen eingehen. In unseren Laboratorien aber haben wir ihnen sozusagen Handschellen angelegt und sie an ihren Enden so verknüpft, dass sie eine lange feste Kette bilden."

Der nächste Schritt besteht darin, dass die Triblockterpolymere einem Lösungsmittel ausgesetzt werden, in denen nur ihr Mittelabschnitt B nicht löslich ist, wohl aber ihre Außenabschnitte A und C. In einem solchen Lösungsmittel bilden sich größere Molekülgruppen heraus; und zwar in der Weise, dass sich die B-Abschnitte kugelförmig aneinander lagern, während die löslichen Enden A und C nach außen frei beweglich sind. Es entstehen sternförmige Aggregate, Mizellen genannt, die deutlich größer sind als 10 Nanometer.

Diese Sternstrukturen lassen sich nun ihrerseits in größere, komplexe Einheiten überführen. Dazu wird ein Lösungsmittel benötigt, in welchem auch die A-Abschnitte nicht löslich sind, so dass diese sich mit ihresgleichen zusammenlagern. Die symmetrischen Strukturen, die dabei herauskommen, bewegen sich nunmehr in einer Größenordnung zwischen 50 und 100 Nanometern. Unter dem Mikroskop erinnern sie an vertraute Alltagsobjekte. "Kleeblatt", "Fußball", "Hamburger" oder "Double-Burger" haben die Bayreuther Polymerchemiker sie genannt. Es hängt keineswegs vom Zufall ab, welche dieser Strukturen sich herausbilden. Denn wie die Experimente in den Bayreuther Laboratorien gezeigt haben, ist es mit relativ einfachen Mitteln möglich, den Entstehungsprozess aller dieser Strukturen von Anfang an zielgenau zu steuern. Entscheidend sind dabei zwei Faktoren: die Länge der Abschnitte A, B und C in den Triblockterpolymeren, die als Ausgangsmaterial gewählt werden, und die Qualität des Lösungsmittels. Unter geeigneten Laborbedingungen kann der Prozess bis zu kettenförmigen Strukturen weitergetrieben werden, die in den Mikrometerbereich vorstoßen.

Der aktuelle Forschungsbeitrag in "Nature Communications" präsentiert damit einen präzise gesteuerten Prozess der hierarchischen Selbstorganisation, der dadurch charakterisiert ist, dass sich polymere Bausteine zu immer größeren Einheiten zusammenschließen. Bei allen Strukturen, die im Zuge dieser Prozesse entstehen, handelt es sich – chemisch gesprochen – um Multikompartment-Mizellen. Sie bestehen aus klar unterscheidbaren Abschnitten ("Kompartimenten"), deren Anzahl und Anordnung sich mit hoher Genauigkeit ansteuern lässt.

"Es ist klar, dass unsere bisherigen Erkenntnisse noch im Bereich der Grundlagenforschung angesiedelt sind", erklärt Prof. Müller. "Aber ebenso deutlich zeichnen sich bereits jetzt hochinteressante Anwendungspotenziale ab. In der Biomedizin können definierte Kompartimente der Multikompartment-Mizellen genutzt werden, um Wirkstoffe einzulagern und in die Zellen zu transportieren; andere Kompartimente können magnetische Partikel oder Marker enthalten, die zur Steuerung oder räumlichen Verfolgung der Mizellen dienen können. Derzeit sind wir selbst gespannt, zu welchen Innovationen unsere bisherigen Erkenntnisse noch führen werden."

Veröffentlichung:

André H. Gröschel, Felix H. Schacher, Holger Schmalz, Oleg V. Borisov, Ekaterina B. Zhulina, Andreas Walther, Axel H.E. Müller,
Precise hierarchical self-assembly of multicompartment micelles,
in: Nature Communications, Volume 3, Article number 710, Published 28 February 2012.

DOI: 10.1038/ncomms1707

Ansprechpartner für weitere Informationen:

Prof. Dr. Axel Müller
Lehrstuhl für Makromolekulare Chemie II
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3399
E-Mail: axel.mueller@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie