Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wer zieht die Fäden in der Zelle?

02.04.2009
Konstanzer Molekulargenetiker entdeckt neue Wechselwirkungen zwischen Proteinen bei der Zellteilung

Durch die Zellteilung, die Mitose, ist die Entstehung eines vielzelligen Organismus überhaupt erst möglich. Das gilt für Hund, Katze, Maus, Mensch oder Pflanze gleichermaßen.

Gesteuert wird der Prozess über Proteine, die in sehr komplexer Wechselwirkung miteinander stehen. Der Konstanzer Molekulargenetiker Prof. Thomas U. Mayer hat neue Forschungsergebnisse zu den Proteinen CPC und Mklp2 gewonnen. Er weiß jetzt, welche Proteine wiederum die Regieanweisungen für CPC und Mklp2 geben und mit dafür sorgen, dass die Zellteilung vonstatten gehen kann: Cylcin-abhängige Kinase 1.

Ein Knäuel von zarten Fäden, ineinander verwirbelt. Dann wieder Fäden ganz geordnet, gerade gezogen. Ein Gebilde wie die Spindel in einem Webstuhl zieht die Fäden auseinander. Das Ganze in leuchtenden Farben auf schwarzem Grund. Was wir sehen, sind Bilder von Zellteilungsvorgängen. Sie stammen aus dem Labor des Biologen Prof. Thomas U. Mayer aus dem Fachbereich Biologie der Universität Konstanz. Er ist Experte für Molekulare Genetik. Mit seinem Wissenschaftlerteam hat er neue Erkenntnisse darüber gewinnen können, welche Proteine dafür verantwortlich sind, dass die Proteinmischungen CPC und Mklp2, die für die Teilungsvorgänge einer Zelle im Rahmen der Mitose mitverantwortlich sind, überhaupt in Aktion treten können.

Bei der Mitose wird zunächst der Zellkern geteilt, anschließend in der Zytokinese der ganze Zellleib. Diese Zellteilung ist nötig, damit neues Lebens entstehen kann, aber auch damit Verletzungen heilen können und neues Gewebe entsteht. Das Prinzip heißt: Aus ein mach zwei, aber nicht per Zufallsprinzip. Im Gegenteil: die Teilung des Zellleibes muss zeitlich und räumlich exakt koordiniert mit der Zellkernteilung erfolgen, d.h. die Tochterzellen dürfen sich erst abschnüren wenn die Chromosomen komplett getrennt sind und die Abschnürung muss exakt zwischen den getrennten Chromosomen stattfinden. Nur so kann gewährleistet werden, dass jede Tochterzelle einen identischen Satz an Chromosomen erhält. In der Mitose werden die Chromosomen, bildlich gesprochen, "auseinander gezogen", nicht irgendwo, nicht beliebig, sondern an einer ganz bestimmten Stelle. Dazu verdoppelt sich in der Zelle das "Zentrosom", auch Zentralköperchen genannt. An den beiden Zentrosomen bilden sich dann kleine "Förderbander", die den Transportprozess für das genetische Material übernehmen, die Mikrotubuli. Sie sind röhrenartige Gebilde, die zum Zytoskelett - dem Skelett einer Zelle - gehören. Doch ohne zusätzliche Proteine kann dies alles nicht funktionieren. Sie wiederum brauchen von anderen Proteinen genaue Regieanweisungen.

Jetzt kommt der so genannte "CPC", der "Chromosomale Passenger Complex", ins Spiel. Der CPC wandert während der Zellteilung wie ein Passagier an verschiedene Strukturen in der Zellen. Zunächst bindet er an das Centromer. Dabei handelt es sich um die Stelle auf dem Chromosom, an dem über weitere Proteinkomplexe die Chromosomen mit den Mikrotubuli verknüpft werden. Sobald die Chromosomen auseinander gezogen werden, verläßt der CPC die Centromere und bindet an die Mikrotubuli mittig zwischen den getrennten Chromosomen. Er wandert also genau dorthin, wo später der Zellleib geteilt werden soll

Wie der CPC bindet auch Mklp2 an die Stelle, an der die beiden Tochterzellen später abgeschnürt werden.Mklp2 ist ein Motorprotein, welches entlang von Mikrotubuli wandert. Der Treibstoff dabei ist ATP, der generelle Energielieferant in der Zelle. Bislang ist man davon ausgegangen, dass das Motorprotein Mklp2 den CPC als Gepäck (Cargo) an die spätere Zellteilungsstelle transportiert. Die Arbeiten von Mayer haben jedoch gezeigt, dass beide, der CPC und Mklp2, für die korrekte Bindung an Mikrotubuli voneinander abhängen. "Das eine kann ohne das andere nichts ausrichten" bringt es Mayer auf den Punkt.

Wird aus der Zelle das CPC entfernt, dann bewegt sich Mklp2 nicht an die spätere Trennstelle. Wird aus der Zelle das Mklp2 entfernt, dann reagiert auch das CPC nicht und begibt sich nicht auf Wanderung in die Mitte. Fazit: Das Motorprotein braucht sein Cargoprotein und umgekehrt. Die Wissenschaftler wollten mehr wissen: Wer ist für CPC und Mklp2 der Regisseur, sprich: wer gibt den Takt für die Bindung beider Komponenten an die Mikrotubuli an?

Um das herauszufinden, haben Mayer und sein Team das Protein Cyclin-abhängige Kinase 1 (Cdk1) getestet. Bereits bekannt war, dass die Trennung der Chromosomen mit einer Inaktivierung der CDK1 einhergeht, d.h. die Chromosomen trennen sich sobald die Aktivität der Cdk1 abnimmt. Durch die Kombination zellbiologischer und mikroskopischer Methoden sowie dem Einsatz chemischer Inhibitoren konnte Mayer und sein Team zeigen, dass die Inaktivierung der Cdk1 bewirkt, dass der CPC und Mklp2 an Mikrotubuli bindet. Cdk1 ist also der Dirigent auf dessen Zeichen hin, der CPC und Mklp2 an die spätere Zellteilungsfurche lokalisiert. Dadurch wird gewährleistet, dass die Trennung der Chromosomen zeitlich kooridiniert mit der Trennung des Zellleibes abläuft und somit zwei genetisch identische Tochterzellen gebildet werden.

Damit haben Mayer und sein Team wieder ein neues Mosaiksteinchen in der komplizierten Proteinkette, die für den Teilungsvorgang verantwortlich ist, gefunden. Grundlagenforschung pur. Interessant werden diese Fragen aber auch bei medizinischen Fragestellungen. "Jetzt geht es weiter, Schritt für Schritt werden die komplizierten Proteinabfolgen weiter entschlüsselt. Hier im Labor arbeitet eigentlich jeder Doktorand an einem anderen Protein und testet aus, wie es funktioniert", sagt der Wissenschaftler. Er betont, wie wichtig für ihn und sein Projekt die Zusammenarbeit mit der Chemie ist. "Mit Hilfe meiner Kollegen aus der Chemie suchen wir nach Molekülen, die ein Protein in Gang setzen oder ausschalten können. Wir entwickeln eine Art chemischen Schalter, und das geht ohne unsere Partner in der Chemie nicht", erklärt Mayer. Sein Traum: "Irgendwann eine Art Proteintoolbox für alle mitotischen Proteine in der Zelle". Ein langer Weg. Mayer geht ihn weiter. Mit Geduld.

Weitere Informationen:
Prof. Dr. Thomas U. Mayer
Fachbereich Biologie
Universität Konstanz
Universitätsstraße 10
Postfach M 613
78457 Konstanz
Tel.: 07531 88-3707
Fax: 07531 88-4036
E-Mail: thomas.u.mayer@uni-konstanz.de

Claudia Leitenstorfer | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

nachricht Heilpflanze Arnika ist in Norddeutschland genetisch arm dran
27.07.2017 | Freie Universität Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie

Heilpflanze Arnika ist in Norddeutschland genetisch arm dran

27.07.2017 | Biowissenschaften Chemie

Drei Generationen an Sternen unter einem Dach

27.07.2017 | Physik Astronomie