Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Ziehen statt kochen“: Eine neue Form der Chemie

04.10.2012
Moleküle konstruieren und modifizieren mit kovalenter Mechanochemie
Theoretische Chemiker der RUB entwickeln wegweisende Konzepte
Moleküle konstruieren und modifizieren, das ist das Ziel der Chemiker. Wärme, Licht und Elektrizität sind bekannte Energiequellen, um das zu bewerkstelligen. Seit einigen Jahren etablieren Wissenschaftler jedoch eine weitere Methode:

Die Energielandschaft verändern: Sind die mechanischen Kräfte (F), die auf ein Molekül einwirken, stark genug, kann sich die Topologie der Energielandschaft, auf der die chemischen Reaktionen ablaufen, verändern. Dadurch entstehen neue Reaktionswege und damit andere Reaktionsprodukte (rechts, blau), als wenn das Molekül mit Wärme behandelt worden wäre (links, magenta).

Illustration: J. Ribas-Arino und D. Marx

mechanische Kräfte.

Dieses neue Forschungsgebiet, die sogenannte kovalente Mechanochemie, beschreiben Professor Dominik Marx, Inhaber des Lehrstuhls für Theoretische Chemie der Ruhr-Universität, und Dr. Jordi Ribas-Arino (Universität Barcelona), ehemaliger Humboldt-Stipendiat der RUB, in einem umfangreichen Übersichtsartikel in der renommierten Zeitschrift Chemical Reviews. Die konzeptionellen Beiträge der „Koselleck Focus Group“ um Professor Marx zur Theorie der kovalenten Mechanochemie wurden in der ersten Oktoberausgabe des Magazins Chemical & Engineering News der American Chemical Society in einem Feature-Artikel gewürdigt.

Mechanische Kräfte „verbiegen“ die Energielandschaft chemischer Reaktionen

Vor fünf Jahren gelang es Jeff Moore von der Universität Illinois (Urbana-Champaign) und Kollegen erstmals, mechanische Kräfte einzusetzen, um Moleküle in Lösung kontrolliert zu manipulieren. Aufbauend auf ihren Beiträgen zur mechanischen Manipulation von Molekül-Oberflächenkontakten entwickelten die Theoretischen Chemiker der RUB Konzepte und Rechenmethoden, um diese neuartige „kovalente Mechanochemie“ fundamental zu verstehen und am Computer zu simulieren. Die Grundidee ist, dass die externen Kräfte, die im Experiment auf Moleküle wirken, systematisch die Energielandschaft „verbiegen“, auf der chemische Reaktionen ablaufen. Die Deformation kann so stark sein, dass sich neue Reaktionswege eröffnen, die mit anderen Energiequellen wie Wärme nicht zur Verfügung stünden.

Moleküle mit Nano-Kräften manipulieren

Kräfte in der Größenordnung von „Nano-Newton“ reichen aus, um chemische Bindungen in Molekülen neu zu arrangieren. „Das sind im wahrsten Sinne des Wortes zwergenhaft winzige Kräfte“, erklärt Dominik Marx. „In unserer Erlebenswelt entspricht das ganz grob der Gravitationskraft zwischen zwei Menschen, die in einem Abstand von wenigen Metern voneinander stehen – also unmerklich klein! Aber auf der molekularen Ebene reichen diese Kräfte eben aus, um chemische Strukturen umzubauen.“ Mögliche Anwendungen für die kovalente Mechanochemie werden bereits erprobt. „Sie wurde von Rint Sijbesma von der Universiteit Eindhoven schon eingesetzt, um Katalysatoren per Ultraschall von einem Schlafzustand in ihren aktiven Zustand umzuwandeln. Aber das ist eher was für meine Experimentalkollegen“, meint Marx, „wir interessieren uns für die zugrundeliegenden Konzepte.“

Moleküle „mit Gewalt“ abreißen

Die Basis für diese Forschungsrichtung waren Computersimulationen von Experimenten mit atomarer Kraftmikroskopie (AFM), die Marx und Kollegen vor zehn Jahren publizierten. Bei diesen Simulationen werden einzelne Moleküle, die vorher fest auf einer Oberfläche verankert wurden, durch mechanische Kräfte von der Oberfläche abgerissen – quasi mit Gewalt. „Dabei stellte sich heraus, dass nicht einfach eine wohldefinierte chemische Bindung bricht“, sagt Marx. Stattdessen ordnen sich die Atome in sehr komplexer Weise genau an der Kontaktstelle von Molekül und Oberfläche neu an.

Die Geschichte der kovalenten Mechanochemie an der RUB

Basierend auf diesen Studien entwickelte Dominik Marx kürzlich neue Rechenmethoden zur Simulation der kovalenten Mechanochemie gemeinsam mit den Humboldt-Stipendiaten Jordi Ribas-Arino von der Universität Barcelona und Motoyuki Shiga von der Universität Tokyo. In einem von der Deutschen Forschungsgemeinschaft geförderten Reinhart Koselleck-Projekt für besonders risikobehaftete Forschung baute Marx eine mehrköpfige „Mechanochemistry Focus Group“ an der RUB auf. Um von theoretischen Konzepten zu praktischen Aussagen für konkrete Moleküle zu gelangen, braucht man Computersimulationen als Werkzeug. Die hierfür erforderlichen ab initio-Simulationsmethoden sind allerdings extrem rechenaufwändig. Für sie ist das BoViLab@RUB, das „Bochumer Virtuelle Labor“, unerlässlich, das Marx über viele Jahre zusammen mit Dr. Holger Langer an seinem Lehrstuhl aufgebaut hat. „Nun bin ich dabei, mit Kollegen aus der experimentellen Chemie zu sprechen, wie wir gemeinsam in diesem faszinierenden Gebiet weitermachen können“, sagt Marx.
Titelaufnahmen

J. Ribas-Arino, D. Marx (2012): Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics, Chemical Reviews, doi: 10.1021/cr200399q

B. Halford (2012): Tugging on Molecules, Chemistry & Engineering News, Volume 90, Issue 40, Page 55

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28083
dominik.marx@theochem.rub.de

Angeklickt

Video: Kovalente Mechanochemie im Labor
http://www.theochem.rub.de/go/afm.html

Theoretische Chemie an der RUB
http://www.theochem.rub.de/

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.rub.de/
http://www.theochem.rub.de/go/afm.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise