Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Ziehen statt kochen“: Eine neue Form der Chemie

04.10.2012
Moleküle konstruieren und modifizieren mit kovalenter Mechanochemie
Theoretische Chemiker der RUB entwickeln wegweisende Konzepte
Moleküle konstruieren und modifizieren, das ist das Ziel der Chemiker. Wärme, Licht und Elektrizität sind bekannte Energiequellen, um das zu bewerkstelligen. Seit einigen Jahren etablieren Wissenschaftler jedoch eine weitere Methode:

Die Energielandschaft verändern: Sind die mechanischen Kräfte (F), die auf ein Molekül einwirken, stark genug, kann sich die Topologie der Energielandschaft, auf der die chemischen Reaktionen ablaufen, verändern. Dadurch entstehen neue Reaktionswege und damit andere Reaktionsprodukte (rechts, blau), als wenn das Molekül mit Wärme behandelt worden wäre (links, magenta).

Illustration: J. Ribas-Arino und D. Marx

mechanische Kräfte.

Dieses neue Forschungsgebiet, die sogenannte kovalente Mechanochemie, beschreiben Professor Dominik Marx, Inhaber des Lehrstuhls für Theoretische Chemie der Ruhr-Universität, und Dr. Jordi Ribas-Arino (Universität Barcelona), ehemaliger Humboldt-Stipendiat der RUB, in einem umfangreichen Übersichtsartikel in der renommierten Zeitschrift Chemical Reviews. Die konzeptionellen Beiträge der „Koselleck Focus Group“ um Professor Marx zur Theorie der kovalenten Mechanochemie wurden in der ersten Oktoberausgabe des Magazins Chemical & Engineering News der American Chemical Society in einem Feature-Artikel gewürdigt.

Mechanische Kräfte „verbiegen“ die Energielandschaft chemischer Reaktionen

Vor fünf Jahren gelang es Jeff Moore von der Universität Illinois (Urbana-Champaign) und Kollegen erstmals, mechanische Kräfte einzusetzen, um Moleküle in Lösung kontrolliert zu manipulieren. Aufbauend auf ihren Beiträgen zur mechanischen Manipulation von Molekül-Oberflächenkontakten entwickelten die Theoretischen Chemiker der RUB Konzepte und Rechenmethoden, um diese neuartige „kovalente Mechanochemie“ fundamental zu verstehen und am Computer zu simulieren. Die Grundidee ist, dass die externen Kräfte, die im Experiment auf Moleküle wirken, systematisch die Energielandschaft „verbiegen“, auf der chemische Reaktionen ablaufen. Die Deformation kann so stark sein, dass sich neue Reaktionswege eröffnen, die mit anderen Energiequellen wie Wärme nicht zur Verfügung stünden.

Moleküle mit Nano-Kräften manipulieren

Kräfte in der Größenordnung von „Nano-Newton“ reichen aus, um chemische Bindungen in Molekülen neu zu arrangieren. „Das sind im wahrsten Sinne des Wortes zwergenhaft winzige Kräfte“, erklärt Dominik Marx. „In unserer Erlebenswelt entspricht das ganz grob der Gravitationskraft zwischen zwei Menschen, die in einem Abstand von wenigen Metern voneinander stehen – also unmerklich klein! Aber auf der molekularen Ebene reichen diese Kräfte eben aus, um chemische Strukturen umzubauen.“ Mögliche Anwendungen für die kovalente Mechanochemie werden bereits erprobt. „Sie wurde von Rint Sijbesma von der Universiteit Eindhoven schon eingesetzt, um Katalysatoren per Ultraschall von einem Schlafzustand in ihren aktiven Zustand umzuwandeln. Aber das ist eher was für meine Experimentalkollegen“, meint Marx, „wir interessieren uns für die zugrundeliegenden Konzepte.“

Moleküle „mit Gewalt“ abreißen

Die Basis für diese Forschungsrichtung waren Computersimulationen von Experimenten mit atomarer Kraftmikroskopie (AFM), die Marx und Kollegen vor zehn Jahren publizierten. Bei diesen Simulationen werden einzelne Moleküle, die vorher fest auf einer Oberfläche verankert wurden, durch mechanische Kräfte von der Oberfläche abgerissen – quasi mit Gewalt. „Dabei stellte sich heraus, dass nicht einfach eine wohldefinierte chemische Bindung bricht“, sagt Marx. Stattdessen ordnen sich die Atome in sehr komplexer Weise genau an der Kontaktstelle von Molekül und Oberfläche neu an.

Die Geschichte der kovalenten Mechanochemie an der RUB

Basierend auf diesen Studien entwickelte Dominik Marx kürzlich neue Rechenmethoden zur Simulation der kovalenten Mechanochemie gemeinsam mit den Humboldt-Stipendiaten Jordi Ribas-Arino von der Universität Barcelona und Motoyuki Shiga von der Universität Tokyo. In einem von der Deutschen Forschungsgemeinschaft geförderten Reinhart Koselleck-Projekt für besonders risikobehaftete Forschung baute Marx eine mehrköpfige „Mechanochemistry Focus Group“ an der RUB auf. Um von theoretischen Konzepten zu praktischen Aussagen für konkrete Moleküle zu gelangen, braucht man Computersimulationen als Werkzeug. Die hierfür erforderlichen ab initio-Simulationsmethoden sind allerdings extrem rechenaufwändig. Für sie ist das BoViLab@RUB, das „Bochumer Virtuelle Labor“, unerlässlich, das Marx über viele Jahre zusammen mit Dr. Holger Langer an seinem Lehrstuhl aufgebaut hat. „Nun bin ich dabei, mit Kollegen aus der experimentellen Chemie zu sprechen, wie wir gemeinsam in diesem faszinierenden Gebiet weitermachen können“, sagt Marx.
Titelaufnahmen

J. Ribas-Arino, D. Marx (2012): Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics, Chemical Reviews, doi: 10.1021/cr200399q

B. Halford (2012): Tugging on Molecules, Chemistry & Engineering News, Volume 90, Issue 40, Page 55

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28083
dominik.marx@theochem.rub.de

Angeklickt

Video: Kovalente Mechanochemie im Labor
http://www.theochem.rub.de/go/afm.html

Theoretische Chemie an der RUB
http://www.theochem.rub.de/

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.rub.de/
http://www.theochem.rub.de/go/afm.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten