Zentrale Biobank für die Medikamentenforschung

Die Biobank besteht aus drei Kryotanks mit gekühlten Schutzhauben und einer Transferstation, von der aus die Probenbehälter über ein Schienensystem transportiert werden. Insgesamt haben ungefähr 60.000 Proben Platz. © Fraunhofer IBMT

Mit Hilfe von menschlichen Stammzellen bewerten Wissenschaftler, wie Patienten auf neue Medikamente reagieren und untersuchen, wie Krankheiten entstehen. Seit ein paar Jahren ist es möglich, durch Rückprogammierung Stammzellen, die noch alle Zelltypen des menschlichen Körpers bilden können, aus Gewebeproben erwachsener Menschen künstlich zu erzeugen.

Davor war die Pharmaforschung auf adulte Stammzellen oder Primärzellen mit einem eingeschränkten Potential angewiesen. Eine andere Möglichkeit wäre die Verwendung von humanen embryonalen Stammzellen. Neben den moralischen Bedenken stehen diese allerdings nur in begrenzter Vielfalt zur Verfügung.

Das neue Verfahren erlaubt zum Beispiel Haut- oder Blutzellen von erwachsenen Menschen biologisch so umzu-
programmieren, dass sie sich ähnlich verhalten, wie embryonale Stammzellen und sich in jeden beliebigen Zelltyp umwandeln lassen.

»Man spricht von induzierten pluripotenten Stammzellen, abgekürzt iPS-Zellen«, sagt Dr. Julia Neubauer vom Fraunhofer-Institut für Biomedizinische Technik IBMT in St. Ingbert. »In den letzten Jahren sind immer mehr lokale Biobanken entstanden. Keine davon erfüllt jedoch die Anforderungen von Pharmaindustrie und Forschungseinrichtungen: Diese benötigen die Stammzellen ›Ready-to-use‹. Das bedeutet in großer Zahl, konsistent charakterisiert, in ausreichender Qualität und systematisch katalogisiert.«

Zusammen mit 26 Partnern aus Wirtschaft und Forschung hat das IBMT Anfang des Jahres ein Projekt zum Aufbau einer zentralen »European Bank for induced pluripotent Stem Cells (EBiSC)« gestartet, einer Biobank für iPS-Zellen von Patienten mit spezifischen Krankheitsbildern (http://ebisc.org).

Bereits nach sechs Monaten Projektlaufzeit stehen erste Zellen zur Verfügung, die zur Entwicklung neuer Medikamente genutzt werden können. Ziel ist es, nach drei Jahren über 1.000 definierte und charakterisierte Zelllinien mit hundert Millionen Zellen anzubieten. Diese Größe ist nötig, da für ein einzelnes Wirkstoffscreening bereits mehrere Millionen Zellen getestet werden müssen. Die Biobank entsteht vor den Toren Londons, ein identisches – »gespiegeltes« – Pendant zum IBMT-Standort in Sulzbach/Saar.

Zellen werden schonend eingefroren

Das IBMT wurde aufgrund seiner umfassenden Expertise in den EU-Projekten »Hyperlab« und »CRYSTAL« für EBiSC engagiert. Die Wissenschaftler kümmern sich um das Einfrieren der Zellen und die Automatisierung der Zellkultivierung und Biobank. Stammzellen müssen auf unter minus 130 Grad Celsius abgekühlt werden, damit sie über einen längeren Zeitraum überleben.

Um den Kälteschock im gasförmigen Stickstoff zu überstehen, präparieren sie die Wissenschaftler entsprechend. Das IBMT hat beispielsweise Technologien entwickelt, die es erlauben, die Zellen extrem schonend einzufrieren. »Zellen mögen es nicht, wenn sie von der Oberfläche entfernt werden, auf der sie wachsen. Bisher war das für das Einfrieren jedoch nötig. Bei unserer Methode können die Zellen auf der Kulturoberfläche haften bleiben«, schildert Neubauer.

Genau wie bei Lebensmitteln ist auch bei Stammzellen eine geschlossene Kühlkette besonders wichtig für deren Funktion und Haltbarkeit. Die Wissenschaftler bewahren Zellen in etwa 2×1 Meter großen Behältern, sogenannten Kryotanks, auf. Diese müssen die Wissenschaftler öffnen, wenn sie eine Probe entnehmen wollen. Das Problem: Bei offenem Behälter kommen auch die anderen Röhrchen mit der wärmeren Raumluft in Kontakt und tauen auf.

»Das ist genau wie daheim im Kühlschrank. Auch dessen Tür sollte nicht zu lange offen stehen«, sagt Neubauer. Zusammen mit ihren Kollegen am IBMT und dem Industriepartner Askion GmbH hat sie eine Stammzell-Biobank mit Schutzhauben entwickelt, die andere Proben schützt, wenn der Behälter geöffnet wird. So bleibt die Temperatur und auch die Luftfeuchtigkeit – ein weiteres wichtiges Haltbarkeitskriterium – konstant.

Ähnlich wichtig wie das einwandfreie Einfrieren ist, dass die Prozesse automatisch ablaufen. »Das sichert die Konsistenz und macht es erst möglich, große Zellmengen in angeforderter Qualität bereit zu stellen«, so Neubauer. Bei der Kühlung können die Wissenschaftler bereits eine fertige Technologie vorweisen: In ihrer automatischen Biobank ist jedes Zellröhrchen mit Barcodes versehen, um sie nachverfolgen zu können. Die Proben werden auf einem Laufband zu den einzelnen Kühlbehältern transportiert. Ein Computer überwacht den gesamten Einfrier- und Lagerprozess.

An der Automatisierung der Zellkultivierung, dem Vermehren der Zellen, arbeiten die Wissenschaftler gerade. Hier gibt es grundsätzlich zwei Ansätze: mit Robotern, die jede manuelle Bewegung in maschinelle umsetzen oder in gerührten Bioreaktoren, in denen die Zellen frei beweglich optimal mit Nährstoffen und Sauerstoff versorgt werden. Das IBMT hat beide Technologien im Portfolio. »Bis zum Ende des Projekts werden wir wissen, welche Methode sich am besten für unsere Zwecke eignet«, sagt Neubauer.

Media Contact

Dr. Julia Neubauer Fraunhofer Forschung Kompakt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer