Zelluläres Wettrüsten gegen DNA-Parasiten: Wie winzige RNAs springende Gene zähmen

Wird diese Fruchtfliege sich fortpflanzen können oder nicht? Darüber entscheidet ein effektives Sicherheitssystem ihrer Keimzellen, sogenannte piRNAs. Diese winzigen RNA-Fragmente zähmen springende Gene und verhindern so Mutationen, die häufig zu Unfruchtbarkeit führen.

Wäre unser Erbgut ein Haus, so wären neben den offiziellen Bewohnern auch jede Menge Hausbesetzer zu Gange. Ein sehr großer Teil—beim Menschen sind es fast 50% des Genoms—wird von egoistischen Genen wie Transposons bevölkert. Diese auch als springende Gene bezeichneten Genomparasiten sind Überbleibsel aus evolutionärer Vorzeit, die eingebettet in unserer DNA ruhen. Meist sind sie inaktiv und harmlos. Doch werden Transposons aktiv, können sie beliebig im Erbgut herumspringen und Mutationen auslösen.

Der springende Punkt ist die Vielfalt
Einerseits sorgen die vielen, über die Zeit gesammelten Gensequenzen ähnlich einer „genetischen Knetmasse“ für Vielfalt in der DNA und treiben evolutionäre Prozesse an. Mittlerweile weiß man, dass manche der „prominenten“ Mutationen durch Transposons verursacht wurden, wie zum Beispiel beim Birkenspanner: Der Schmetterling kam plötzlich in einer dunklen Variante vor, was den Mutanten in Zeiten industriebedingter Luftverschmutzung erfolgreicher machte, denn plötzlich konnte er sich besser an den verrußten Birkenstämmen tarnen. Meist jedoch sind Mutationen, die durch egoistische Gensequenzen ausgelöst werden, schädlich. Besonders gerne springen Transposons in Keimzellen, wo sie besonders nachhaltige Schäden verursachen und Unfruchtbarkeit auslösen können. 

Doch die Keimzelle rüstet gegen die hüpfenden Störenfriede im Erbgut und benutzt kleine RNA-Fragmente, sogenannte piRNAs, um sie lahm zu legen. Diese winzigen RNAs erkennen die egoistischen Passagen im Erbgut, docken daran an und legen diese still. piRNAs funktionieren wie eine Art Immunsystem für das Genom. Da sie selber unterschiedlichste Sequenzen von DNA-Eindringlingen erkennen müssen, sind auch piRNAs besonders vielfältig, was es den Forscher_innen bisher schwer machte, den genauen Entstehungsmechanismus zu entschlüsseln.
 
piRNAs: Wie die Wächter des Genoms gebastelt werden
Bereits vor 10 Jahren konnte IMBA- Gruppenleiter Julius Brennecke und andere nachweisen, dass piRNAs in den Keimzellen der Fruchtfliege diese Schutzfunktion übernehmen. Neueste Erkenntnisse der RNA-Biologie lieferten einem Forscher_innen-Team um die beiden IMBA-Gruppenleiter Stefan Ameres und Julius Brennecke erstmals Erkenntnisse, wie und wo genau piRNAs in der Zelle fabriziert werden.

„Bei der Herstellung von piRNAs müssen beide Enden des Moleküls exakt zugeschnitten werden. Zwar war bekannt, welcher Mechanismus das eine Ende einer solchen Sequenz definiert. Nun konnten wir herausfinden, wie das andere Ende der piRNA  ‚zurechtgestutzt’ wird, und dass dies über zwei verschiedene molekulare Systeme passiert“, freut sich Jakob Schnabl, einer der beiden Erstautoren über die Erkenntnisse seiner Masterarbeit am IMBA, die er zusammen mit dem Postdoktoranden Rippei Hayashi gewinnen konnte.

Drosophila-Genetik, kombiniert mit neuesten Sequenzier-Methoden und Bioinformatik erlaubten wesentliche molekulare Einblicke in das Sicherheitssystem der Zelle.
Stefan Ameres, IMBA-Gruppenleiter, der schon seit Jahren im aufstrebenden Forschungsfeld der RNA-Biologie forscht erklärt: “Wir konnten nachweisen, dass es zwei Wege gibt, um einsatzfähige piRNAs herzustellen. Am Mitochondrium wirkt ein Enzym namens Zucchini und schneidet piRNAs. Aber auch an einem anderen Ort der Zelle, nämlich im Zellplasma, werden die Vorläufer-RNA-Stückchen von einem Protein mit dem passendem Namen Nibbler zurechtgeknabbert. “

Evolution besser verstehen 
„Erstmals konnten wir den Herstellungsmechanismus der piRNAs vollständig klären. Erstaunlich ist, dass die beiden Systeme zur Entstehung oder Biogenese von piRNAs sehr genau aufeinander abgestimmt und in verschiedenen Bereichen der Zelle aktiv sind. Die Tatsache, dass diese zwei Systeme weit verbreitet im Tierreich sind, eröffnet die interessante Frage, warum sich diese Mechanismen parallel ausgebildet haben,“ fasst Julius Brennecke zusammen. „Erkenntnisse der aktuellen Arbeit können auch dabei helfen, evolutionäre Vorgänge auf molekularer Ebene besser zu verstehen und auch in einem neuen Licht zu sehen. Denn das Wetteifern, das wir in der Natur zwischen Parasit und Wirt beobachten können, findet fortwährend auch in unserem Erbgut statt“. 

Originalpublikation:
“'Genetic and mechanistic diversity of piRNA 3'-end formation'”, Rippei Hayashi, Jakob Schnabl, Dominik Handler, Fabio Mohn, Stefan L. Ameres & Julius Brennecke, Nature, November 16, 2016; doi: 10.1038/nature20162

http://de.imba.oeaw.ac.at/index.php?id=516

Media Contact

Mag. Ines Méhu-Blantar idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer