Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläres Wettrüsten gegen DNA-Parasiten: Wie winzige RNAs springende Gene zähmen

17.11.2016

Ein Forscherteam am Institut für Molekulare Biotechnologie (IMBA) der Österreichischen Akademie der Wissenschaften (ÖAW) konnte erstmals aufklären, wie kleine RNA Fragmente in der Zelle zu einem effektiven Sicherheitsystem gegen Genomparasiten generiert werden, wie das Fachjournal Nature in seiner aktuellen Ausgabe berichtet.

Wäre unser Erbgut ein Haus, so wären neben den offiziellen Bewohnern auch jede Menge Hausbesetzer zu Gange. Ein sehr großer Teil—beim Menschen sind es fast 50% des Genoms—wird von egoistischen Genen wie Transposons bevölkert. Diese auch als springende Gene bezeichneten Genomparasiten sind Überbleibsel aus evolutionärer Vorzeit, die eingebettet in unserer DNA ruhen. Meist sind sie inaktiv und harmlos. Doch werden Transposons aktiv, können sie beliebig im Erbgut herumspringen und Mutationen auslösen.


Wird diese Fruchtfliege sich fortpflanzen können oder nicht? Darüber entscheidet ein effektives Sicherheitssystem ihrer Keimzellen, sogenannte piRNAs. Diese winzigen RNA-Fragmente zähmen springende Gene und verhindern so Mutationen, die häufig zu Unfruchtbarkeit führen.

Der springende Punkt ist die Vielfalt
Einerseits sorgen die vielen, über die Zeit gesammelten Gensequenzen ähnlich einer „genetischen Knetmasse“ für Vielfalt in der DNA und treiben evolutionäre Prozesse an. Mittlerweile weiß man, dass manche der „prominenten“ Mutationen durch Transposons verursacht wurden, wie zum Beispiel beim Birkenspanner: Der Schmetterling kam plötzlich in einer dunklen Variante vor, was den Mutanten in Zeiten industriebedingter Luftverschmutzung erfolgreicher machte, denn plötzlich konnte er sich besser an den verrußten Birkenstämmen tarnen. Meist jedoch sind Mutationen, die durch egoistische Gensequenzen ausgelöst werden, schädlich. Besonders gerne springen Transposons in Keimzellen, wo sie besonders nachhaltige Schäden verursachen und Unfruchtbarkeit auslösen können. 

Doch die Keimzelle rüstet gegen die hüpfenden Störenfriede im Erbgut und benutzt kleine RNA-Fragmente, sogenannte piRNAs, um sie lahm zu legen. Diese winzigen RNAs erkennen die egoistischen Passagen im Erbgut, docken daran an und legen diese still. piRNAs funktionieren wie eine Art Immunsystem für das Genom. Da sie selber unterschiedlichste Sequenzen von DNA-Eindringlingen erkennen müssen, sind auch piRNAs besonders vielfältig, was es den Forscher_innen bisher schwer machte, den genauen Entstehungsmechanismus zu entschlüsseln.
 
piRNAs: Wie die Wächter des Genoms gebastelt werden
Bereits vor 10 Jahren konnte IMBA- Gruppenleiter Julius Brennecke und andere nachweisen, dass piRNAs in den Keimzellen der Fruchtfliege diese Schutzfunktion übernehmen. Neueste Erkenntnisse der RNA-Biologie lieferten einem Forscher_innen-Team um die beiden IMBA-Gruppenleiter Stefan Ameres und Julius Brennecke erstmals Erkenntnisse, wie und wo genau piRNAs in der Zelle fabriziert werden.

„Bei der Herstellung von piRNAs müssen beide Enden des Moleküls exakt zugeschnitten werden. Zwar war bekannt, welcher Mechanismus das eine Ende einer solchen Sequenz definiert. Nun konnten wir herausfinden, wie das andere Ende der piRNA  ‚zurechtgestutzt’ wird, und dass dies über zwei verschiedene molekulare Systeme passiert“, freut sich Jakob Schnabl, einer der beiden Erstautoren über die Erkenntnisse seiner Masterarbeit am IMBA, die er zusammen mit dem Postdoktoranden Rippei Hayashi gewinnen konnte.

Drosophila-Genetik, kombiniert mit neuesten Sequenzier-Methoden und Bioinformatik erlaubten wesentliche molekulare Einblicke in das Sicherheitssystem der Zelle.
Stefan Ameres, IMBA-Gruppenleiter, der schon seit Jahren im aufstrebenden Forschungsfeld der RNA-Biologie forscht erklärt: “Wir konnten nachweisen, dass es zwei Wege gibt, um einsatzfähige piRNAs herzustellen. Am Mitochondrium wirkt ein Enzym namens Zucchini und schneidet piRNAs. Aber auch an einem anderen Ort der Zelle, nämlich im Zellplasma, werden die Vorläufer-RNA-Stückchen von einem Protein mit dem passendem Namen Nibbler zurechtgeknabbert. “

Evolution besser verstehen 
„Erstmals konnten wir den Herstellungsmechanismus der piRNAs vollständig klären. Erstaunlich ist, dass die beiden Systeme zur Entstehung oder Biogenese von piRNAs sehr genau aufeinander abgestimmt und in verschiedenen Bereichen der Zelle aktiv sind. Die Tatsache, dass diese zwei Systeme weit verbreitet im Tierreich sind, eröffnet die interessante Frage, warum sich diese Mechanismen parallel ausgebildet haben,“ fasst Julius Brennecke zusammen. „Erkenntnisse der aktuellen Arbeit können auch dabei helfen, evolutionäre Vorgänge auf molekularer Ebene besser zu verstehen und auch in einem neuen Licht zu sehen. Denn das Wetteifern, das wir in der Natur zwischen Parasit und Wirt beobachten können, findet fortwährend auch in unserem Erbgut statt“. 

Originalpublikation:
“'Genetic and mechanistic diversity of piRNA 3'-end formation'”, Rippei Hayashi, Jakob Schnabl, Dominik Handler, Fabio Mohn, Stefan L. Ameres & Julius Brennecke, Nature, November 16, 2016; doi: 10.1038/nature20162

Weitere Informationen:

http://de.imba.oeaw.ac.at/index.php?id=516

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zellen auf Wanderschaft: Falten in der Zellmembran liefern Material für nötige Auswölbungen
23.11.2017 | Westfälische Wilhelms-Universität Münster

nachricht Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen
23.11.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung