Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellulärer Bewegungsfilter

17.07.2015

Bewegung trotz Stillstand. Im Imax-Kino können großformatige Filme die Illusion der Eigenbewegung hervorrufen, denn das Gehirn berechnet die Eigenbewegung aus dem Vorbeifließen der Umwelt an den Augen.

Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried bei München und ihre Kollegen des Janelia Research Campus in Virginia (USA) fanden nun einen ganz neuen, für diese Berechnungen wichtigen, Nervenzelltyp im Fliegenhirn.


Bewegungsrichtungen werden in getrennten Gehirnbereichen verarbeitet. Ein neuer Zelltyp (hier farbig) durchbricht diese Struktur und verhindert eine Fehlaktivierung durch Störsignale.

A. Nern, Janelia Research Campus

Diese Zellen bilden die Grundlage des sogenannten Bewegungs-Antagonismus: Beim Menschen und anderen Tierarten werden bestimmte Nervenzellen von Bewegungen in eine Richtung aktiviert, von Bewegungen in die Gegenrichtung gehemmt.

Bewegung ist die Änderung der Position mit der Zeit. Klingt eigentlich ganz einfach. Das Erkennen von Bewegungen ist für einzelne Lichtsinneszellen der Netzhaut jedoch eine unlösbare Aufgabe, denn sie "sehen" jeweils nur einen kleinen Ausschnitt des Gesamtbildes.

Verändert sich etwas, ist unklar, ob sich das Objekt bewegt hat oder verschwunden ist. Falls es sich bewegt hat, wohin? Um eine Bewegung und ihre Richtung zu sehen, muss das Gehirn die Bildinformationen einzelner Lichtsinneszellen daher miteinander vergleichen – und zwar zeitverzögert.

Geordnete Verarbeitung

Was dabei genau im Gehirn vorgeht, das entziffern Alexander Borst und sein Team am Max-Planck-Institut für Neurobiologie. Die Forscher nehmen das System Zelle für Zelle auseinander und analysieren Aufbau, Verbindungen und Funktionen der einzelnen Komponenten.

Das geht natürlich nicht im menschlichen Gehirn. Die Wissenschaftler untersuchen das Bewegungssehen am Modell der Fruchtfliege. „Auch wenn sich Fliegen und Menschen unterscheiden – die Verarbeitung optischer Informationen hat sehr viele Parallelen“, sagt Alexander Borst.

So konnten die Wissenschaftler zum Beispiel zeigen, dass das Gesehene bei Fliegen – wie beim Menschen – zunächst in zwei separate Verarbeitungsbahnen aufgetrennt wird: eine Bahn für helle, die andere für dunkle Kanten. Innerhalb jeder dieser Bahnen werden die Informationen dann nach ihrer Richtung sortiert und getrennt weiterverarbeitet. Im Fliegengehirn wissen die Forscher nicht nur, dass dies geschieht, sondern auch welche Zellen dazu wie verschaltet sind.

„Die unterschiedlichen Richtungsbahnen im Gehirn zu finden, das war ein tolles Ergebnis“, erinnert sich Alexander Borst. Wenn die Bewegungsrichtungen jedoch separat verarbeitet werden, warum gibt es dann den sogenannten "Bewegungs-Antagonismus"?

Bei Fliegen, Menschen und vielen anderen Tieren werden großflächige Nervenzellen tiefer im Gehirn durch Bewegung in "ihre" Richtung erregt, während eine Bewegung in die Gegenrichtung diese Zellen zusätzlich hemmt. Bei einer getrennten Verarbeitung der Richtungsinformationen sollte das Hemmen der Gegenrichtung eigentlich überflüssig sein. „Diese kleine Ungereimtheit ließ uns keine Ruhe“, so Borst. Manchmal wollen es Forscher einfach genau wissen.

Grenzgänger mit entscheidender Funktion

Die Wissenschaftler setzten ihr ganzes Können ein, um diesen "kleinen Punkt" zu klären. Wie sich zeigte, entdeckten sie dabei eine entscheidende Schaltkreiskomponente, die LPi-Zellen. Dieser bis dahin unbekannte Nervenzelltyp durchbricht die strikte Ordnung der getrennten Richtungsbahnen: Die Zellen schicken die Informationen von "ihrer" Bahn als hemmendes Signal in die Nachbarbahn, die für die gegenläufige Bewegung zuständig ist.

Die Ergebnisse zeigen, dass LPi-Zellen direkt dafür verantwortlich sind, dass die großflächigen Zellen im Fliegenhirn durch Bewegung entgegen ihrer Vorzugrichtung gehemmt werden. Mit den neu entdeckten Zellen hatten die Wissenschaftler somit die zelluläre Grundlage für den Bewegungs-Antagonismus gefunden. Nun bestand erstmals die Möglichkeit, die funktionelle Bedeutung dieses Phänomens aufzuklären.

Wie die folgenden Untersuchungen zeigten, verhindern die LPi-Zellen, dass die großflächigen Zellen durch unspezifische Signale innerhalb ihres Sehfeldes erregt werden. „Fliegen sind Meister des Bewegungssehens, doch ohne LPi-Zellen könnten sie vor lauter Fehlaktivierungen kaum zwischen verschiedenen Bewegungen unterscheiden“, fasst Alex Mauss die Ergebnisse seiner gerade erschienenen Studie zusammen.

Blockierten die Wissenschaftler die Funktion der LPi-Zellen, so wurden die großflächigen Zellen nun durch Bewegungsmuster, wie sie beim Vorwärtsflug entstehen, genauso erregt, wie durch Muster, die bei Drehbewegungen entstehen. Die Forscher hatten somit nicht nur den Schaltplan des Bewegungssehens in diesem Teil des Fliegenhirns restlos aufgeklärt. Sie konnten auch zeigen, wie Störsignale vom System durch einen einfachen Mechanismus herausgefiltert werden.

Originalveröffentlichung
Alex Mauss, Katarina Pankova, Alexander Arenz, Aljoscha Nern, Gerald Rubin, Alexander Borst
Neural Circuit to Integrate Opposing Motions in the Visual Field
Cell, 16. Juli 2015

Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3251
Email: borst@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Berichte zu: Bahn Fliegenhirn Gehirn MPI Max-Planck-Institut Nervenzellen Nervenzelltyp Neurobiologie Zelle Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie