Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellulären Sortierprozessen auf der Spur

07.03.2017

In einer tierischen oder pflanzlichen Zelle laufen unzählige Prozesse ab, in denen sich kleine Bausteine sortieren und zu größeren Molekülen zusammensetzen, umbauen oder wieder in ihre einzelnen Bestandteile zerlegen.

Wissenschaftler versuchen, derartige Ereignisse künstlich nachzustellen, sind aber von der Komplexität natürlicher Vorgänge noch weit entfernt. Forschern des DWI – Leibniz-Institut für Interaktive Materialien und der Universität Freiburg ist es nun gelungen, ein Set aus vier mikrometergroßen Bausteinen herzustellen, das sich ohne äußeres Zutun selbstständig auf unterschiedliche Weise sortieren und sich anschließend wieder vermischen kann.


Wissenschaftler des DWIs und der Universität Freiburg stellten vier Arten von mikroskopisch kleinen Gel-Partikeln her, die sich selbstständig zu unterschiedlichen Strukturen anordnen können.

Andreas Walther, Universität Freiburg

Der Forschungserfolg lässt sich anhand von Legosteinen erklären: Man nehme einen Haufen Legosteine, von denen jeder Stein entweder blau, rot, grün oder gelb ist. Wer es sich nun einfach machen möchte, baut diese Legosteine ohne Berücksichtigung der vier Farben zusammen, sodass ein buntes Gebilde entsteht.

Ein wenig größer ist der Aufwand, wenn man die Legosteine zunächst nach den vier Farben sortiert, sodass nur komplett blaue, rote, grüne oder gelbe Objekte entstehen. Läuft dieser Prozess selbstständig an, nennt man ihn ‚unsoziale‘ Assemblierung. Eine weitere, etwas komplexere Aufgabe ist, aus der bunten Mischung an Legosteinen nur Objekte mit roten und blauen Steinen und Objekte mit grünen und gelben Steinen zu bauen. Laufen beide Prozesse gleichzeitig und selbstständig ab, so spricht man von einer ‚sozialen‘ Assemblierung.

Eine ähnliche Aufgabe hatten sich die Wissenschaftler aus Aachen und Freiburg gestellt, allerdings nutzen sie winzige Gelpartikel, sogenannten Mikrogele, statt der handlichen Legosteine. Mikrogele sind besonders wasserreiche, schwammartige Gelpartikel, die sich chemisch modifizieren lassen.

„Wir haben vier verschiedenen Arten von Mikrogelen hergestellt, die sich selbstständig sortieren und zusammenfügen können. Dabei können sich die Mikrogel-Typen sowohl zu ‚unsozialen‘ Gruppen zusammenfügen, also unter ihresgleichen bleiben, oder sich ‚sozial‘ sortieren, also sich gemeinsam mit einem zweiten Mikrogel-Typ zusammenfügen“, erklärt Dr. Alexander Kühne vom DWI. Er leitete das Forschungsprojekt gemeinsam mit Prof. Dr. Andreas Walther, der im Herbst 2016 vom DWI an die Universität Freiburg wechselte.

Die Schwierigkeit lag für die Wissenschaftler darin, dass die Mikrogele zwischen falschen und richtigen Partnern unterscheiden müssen. Um das zu erreichen, bauten die Wissenschaftler molekulare Interaktionen in die Mikrogele ein, sodass manche Mikrogele nun miteinander interagieren können und andere wiederum nicht. Das funktioniert wie ein Schlüssel, der nur in ein bestimmtes Schloss passt.

Statt Schlüssel und Schloss verwendeten die Wissenschaftler schaltbare Moleküle, die sich in zyklische Zuckermoleküle einlagern. Mit einer Veränderung der Lichtbestrahlung oder durch bestimmte chemische Reaktionen können die Forscher die Form der schaltbaren Moleküle während des laufenden Experiments verändern. Auf diese Weise können die Mikrogele sich sortieren und auf Knopfdruck wieder auseinanderdriften und sich durchmischen.

„Wir möchten mit unseren Versuchen natürliche Vorgänge in Zellen besser verstehen“, so Kühne. „Gleichzeitig helfen uns Fortschritte auf diesem Gebiet bei der Entwicklung biologisch inspirierter, interaktiver Materialien.“

Veröffentlichung: Kang Han, Dennis Go, Thomas Tigges, Khosrow Rahimi, Alexander J. C. Kuehne, Andreas Walther, “Social Self-Sorting of Colloidal Families in Co-Assembling Microgel Systems”, Angewandte Chemie International Edition 2017,
DOI: 10.1002/anie.201612196.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.dwi.rwth-aachen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie