Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie zelluläre Prozesse zur komplexen Gehirnfunktion führen

25.11.2009
Neuer SFB an der LMU gestartet

In den letzten Jahrzehnten waren die Neurowissenschaften vor allem auf zwei Gebieten erfolgreich: Erstens konnten sie gänzlich neue Einblicke in die molekularen und zellulären Grundlagen neuronaler Systeme erhalten.

Zweitens, dank funktioneller Bildgebung und anderer moderner Verfahren, konnten sie immer genauer auch die Aktivierungsmuster im lebenden Gehirn darstellen.

Doch wie werden zelluläre Mechanismen in diese höheren Gehirnfunktionen übersetzt? Zur Untersuchung dieser Frage bietet sich die Verarbeitung verhaltensrelevanter Information auf der Ebene spezifischer, gut beschriebener neuronaler Schaltkreise an. Die Wissenslücke zu den Vorgängen zwischen molekular-zellulären und höheren Verarbeitungsebenen soll nun der neu eingerichtete Sonderforschungsbereich (SFB) 870 "Bildung und Funktion neuronaler Schaltkreise in sensorischen Systemen" schließen. Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekts ist Professor Benedikt Grothe vom "Munich Center for Neurosciences - Brain and Mind" (MCN LMU), aus dem heraus die Initiative für den neuen SFB entwickelt und betreut wurde.

Die Neurowissenschaft gilt vielfach bereits als Schlüsseldisziplin der kommenden Jahre. Können hier doch nun - nicht zuletzt dank rasanter technischer Fortschritte - tiefe Einblicke in das Zusammenspiel und die Funktion der Neuronen gewonnen werden. Fragen nach den molekularen und zellulären Grundlagen der Prozesse in unserem Gehirn werden damit immer mehr der wissenschaftlichen Analyse zugänglich. Daneben kann unser Denkorgan "als Ganzes" jetzt aber auch immer besser bei der Arbeit beobachtet werden: Verfeinerte bildgebende Verfahren zeigen die Aktivierungsmuster im Gehirn: Welche Areale sind bei welcher Tätigkeit aktiv? "Was nun aber noch fehlt, ist die Verbindung dieser Erkenntnisse", sagt Professor Grothe, der Sprecher des neu eingerichteten SFBs. "Wir wissen noch nicht, wie die Vorgänge in den Zellen und an den Synapsen mit den komplexen Leistungen und den Aktivierungsmustern des Gehirns zusammenhängen. Deshalb müssen wir zunächst verstehen, wie einzelne Schaltkreise funktionieren und wie Information in kleineren und mittleren Neuronenpopulationen repräsentiert wird." Eine Lücke, die der neue SFB schließen soll:

Die Forscher erhoffen sich von diesem Projekt ein besseres Verständnis der Informationsverarbeitung in sensorischen Systemen, deren Entwicklung und Plastizität. In einem ersten Schritt sollen dafür neuronale Schaltkreise in sensorischen Systemen verschiedener Modellorganismen untersucht werden. "Diese Schaltkreise verarbeiten spezifische und bekannte Information und bieten eine Reihe von konzeptionellen Vorteilen gegenüber anderen neuronalen Schaltkreisen", berichtet Grothe. "Zum einen haben sich die sensorischen Schaltkreise über Jahrmillionen an ihre Aufgaben angepasst, also an die Verarbeitung verhaltensrelevanter Stimuli. Deren physikalische Parameter lassen sich vielfach experimentell präzise kontrollieren und manipulieren - und dazu kommt der Vorteil, dass sich gerade sensorische neuronale Schaltkreise oft durch eine klare Beziehung zwischen Struktur und Funktion auszeichnen."

Die experimentelle Analyse von Schaltkreisfunktionen ist hier besonders gut möglich, weil die sensorische Information in parallelen, anatomisch abgrenzbaren Bahnen vearbeitet wird, die klare und testbare Funktionen haben. So lassen sich auch aktuelle Modelle zur neuronalen Verarbeitung sensorischer Information, die aus der theoretischen Neurobiologie, der "Computational Neuroscience", kommen, mit Hilfe neuer experimenteller Techniken konkret testen. "Diese wissenschaftliche Interaktion wiederum ist nötig, um von einer deskriptiven Ebene auf die eines echten Verständnisses von Gehirnfunktion zu kommen", sagt Grothe. Im SFB 870 wird dieser Ansatz einen Schwerpunkt bilden. Eine ganze Reihe weiterer Projekte befasst sich mit neuesten Techniken zur gezielten Manipulation einzelner Neuronengruppen, etwa durch genetische Veränderungen oder durch optische Kontrolle der Aktivität einzelner Neurone oder Neuronengruppen durch lichtgesteuerte Moleküle.

In München und Umgebung arbeiten bereits einige Gruppen, die sich mit unterschiedlichen sensorischen Systemen befassen, etwa dem Hören, Sehen, Riechen und dem Gleichgewichtssinn. Hier kommt seit langem eine ganze Palette konzeptioneller und experimenteller Herangehensweisen zum Einsatz. Damit ist der SFB in einem wissenschaftlichen Umfeld angesiedelt, das schon jetzt für die Erforschung neuronaler Schaltkreise und ihrer Funktionsweise herausragend ist. Neben der LMU als Sprecherhochschule sind die TU München, das Max-Planck-Institut für Neurobiologie und das Helmholtz Zentrum München beteiligt. Der SFB setzt sich aus 23 wissenschaftlichen und einem administrativen Teilprojekt zusammen. Bei einer maximalen Laufzeit von zwölf Jahren wird er zunächst mit rund zehn Millionen Euro für vier Jahre gefördert. (suwe)

Ansprechpartner:
Professor Benedikt Grothe
Biozentrum der LMU München
Tel: +49-89-2180-74300
Fax: +49-89 2180-74304
E-Mail: grothe@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.neuro.bio.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften