Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläre Metamorphose im Gehirn

21.11.2014

Gliazellen des Gehirns können in verletzten Hirnarealen zur Bildung von funktionsfähigen Nervenzellen angeregt werden. Vermittelt wird diese Reaktion von den Proteinen Sox2 und Ascl1. Dies berichten Wissenschaftler von der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, vom Helmholtz Zentrum München und der Ludwig-Maximilians-Universität München im Fachjournal ‚Stem Cell Reports‘, herausgegeben von Cell Press.

Degenerative Erkrankungen des Gehirns, wie Morbus Alzheimer, oder ein Gewebeschaden des Gehirns, etwa durch eine Durchblutungsstörung beim Schlaganfall, führen zum Untergang von Nervenzellen (Neuronen). Der sogenannte zerebrale Kortex, die für komplexe Denkvorgänge zuständige Hirnregion, ist nicht in der Lage, diese Zellen zu ersetzen.


Nervenzelle (Neuron) | Quelle: Fotolia

Das Wissenschaftlerteam um Prof. Dr. Benedikt Berninger von der Universitätsmedizin der Johannes Gutenberg-Universität Mainz und Prof. Dr. Magdalena Götz vom Helmholtz Zentrum München und der LMU hat nun herausgefunden, dass sich bestimmte Gliazellen (NG2 Glia) – eigentlich Stützzellen des Hirngewebes – unter bestimmten Bedingungen im zerebralen Kortex in Neuronen verwandeln. Damit bilden NG2 Glia eine vielversprechende Grundlage für neue Therapieansätze.

„In unserer Studie können wir erstmalig im Tiermodell die Verwandlung spezifischer NG2 Glia in induzierte Nervenzellen nachweisen“, sagt Studienleiter Berninger. „Dies ebnet den Weg für künftige Studien, um diese Zellen für zelluläre Reparaturen im Gehirn einzusetzen.“

Der zerebrale Kortex spielt eine zentrale Rolle für Hirnleistungen wie Gedächtnis, Aufmerksamkeit, Wahrnehmung, Sprache und Bewusstsein. Im Gegensatz zu anderen Hirnregionen besitzt er aber keinerlei regenerative Fähigkeiten. Die Wissenschaftler konnten schon früher nachweisen, dass bestimmte Transkriptionsfaktoren*, wie Sox2 und Ascl1, die Verwandlung von Glia- zu Nervenzellen induzieren können.

Nun konnte diese Reaktion aber auch im lebenden Organismus gezeigt werden. Dazu wurden Tiermodelle nach einer Hirnverletzung mit Transkriptionsfaktoren behandelt. Es zeigte sich, dass Sox2 allein oder in Kombination mit Ascl1 die Bildung von Neuronen, v.a. aus NG2 Glia, auslöste. Der große Vorteil der Gliazellen liegt darin, dass sie im Gehirn zahlreich vorkommen und eine lebenslange Fähigkeit zur Proliferation besitzen.

Diese Reprogrammierung von Zellen könnte eine neue Möglichkeit der Zellersatztherapie im Gehirn darstellen. „Künftige Studien müssen klären, welche weiteren Faktoren eine Reifung der Neuronen steuern und wie diese in funktionelle Schaltkreise integriert werden. Dann ist eine therapeutische Weiterentwicklung dieses Ansatzes auch in der Klinik denkbar“, so Götz.

Weitere Informationen

*Transkriptionsfaktoren sind Proteine, die die Genaktivität kontrollieren, indem sie spezifisch an die DNA binden.

Original-Publikation:

Christophe Heinrich et al. (2014), Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports, doi: http://dx.doi.org/10.1016/j.stemcr.2014.10.007

Link zur Fachpublikation: http://www.cell.com/stem-cell-reports/abstract/S2213-6711%2814%2900329-4

Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor. http://www.unimedizin-mainz.de

Das Helmholtz Zentrum München verfolgt als deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.000 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Die LMU ist eine der führenden Universitäten in Europa mit einer über 500-jährigen Tradition. Sie bietet ein breites Spektrum aller Wissensgebiete – die ideale Basis für hervorragende Forschung und ein anspruchsvolles Lehrangebot. Es reicht von den Geistes- und Kultur- über Rechts-, Wirtschafts- und Sozialwissenschaften bis hin zur Medizin und den Naturwissenschaften. 14 Prozent der 50.000 Studierenden kommen aus dem Ausland – aus insgesamt 125 Nationen. Das Know-how und die Kreativität der Wissenschaftlerinnen und Wissenschaftler bilden die Grundlage für die herausragende Forschungsbilanz der Universität. Der Erfolg der LMU in der Exzellenzinitiative, einem deutschlandweiten Wettbewerb zur Stärkung der universitären Spitzenforschung, dokumentiert eindrucksvoll die Forschungsstärke der Münchener Universität. http://www.lmu.de

Ansprechpartner für die Medien

Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-2238 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de

Pressekontakt Universitätsmedizin Mainz:
Barbara Reinke, Stabsstelle Kommunikation und Presse der Universitätsmedizin Mainz,
Tel.: 06131-17 7428, Fax: 06131-17 3496, E-Mail: pr@unimedizin-mainz.de
Fachliche Ansprechpartner

Prof. Magdalena Götz, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Stammzellforschung, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3750 - E-Mail: magdalena.goetz@helmholtz-muenchen.de

Prof. Benedikt Berninger, Arbeitsgruppe Adulte Neurogenese und zelluläre Reprogrammierung, Institut für Physiologische Chemie der Universitätsmedizin der Johannes Gutenberg Universität Mainz, Forschungsschwerpunkt Translationale Neurowissenschaften (FTN), Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Tel.: 06131 -39 21334, Fax: 06131- 39 21386, E-Mail: berningb@uni-mainz.de


Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/article/25579/index.html

Susanne Eichacker | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie