Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläre „Licht-Schalter“ mit Neutronenstreuung analysiert

23.03.2016

Die inneren Bewegungen von Proteinen können für ihre Funktionsfähigkeit bedeutend sein. Dafür finden Forscher immer mehr Beispiele. Auch bei den in der Natur weit verbreiteten und zudem biotechnologisch bedeutsamen „LOV-Photorezeptoren“ haben Wissenschaftler aus Jülich, Aachen, Düsseldorf und Garching bei München nun mit Hilfe von Neutronenspektroskopie dynamische Prozesse nachgewiesen. Die Ergebnisse zeigen das große Potential von Neutronenstreuuntersuchungen für die Untersuchung zellulärer Prozesse. Die Ergebnisse wurden in der Fachzeitschrift „Biophysical Journal“ veröffentlicht (DOI: 10.1016/j.bpj.2016.01.021).

Molekularbiologen lieben LOV-Proteine, denn mit ihrer Hilfe lassen sich biologische Vorgänge fast wie mit einem Schalter an- und ausknipsen. Wenn man sie mit anderen Proteinen koppelt, lassen sich diese mit Licht steuern und Stoffwechselprozesse in den modifizierten Zellen untersuchen.


Überlagerte Bewegungsstadien eines LOV-Proteins (im Vordergrund), erstellt mit Molekulardynamiksimulation.

Forschungszentrum Jülich/M. Bocola, RWTH Aachen

Der emotional klingende Name der biologischen Schalter hat einen nüchternen Ursprung: Es handelt sich um ein Akronym der englischen Begriffe für Licht, Sauerstoff und Spannung – der ausgeschriebene Name lautet „Flavin-binding light, oxygen, voltage photoreceptor“.

In der Natur stimulieren solche lichtsensitiven Eiweißmoleküle zum Beispiel das Wachstum von Pflanzen zum Licht und in Bakterien die Bildung von Photosynthesepigmenten, wenn Licht auf sie fällt. Ihre große Verbreitung und ihr technologischer Nutzen rühren unter anderem daher, dass sie modular funktionieren: Die Schaltfunktion lässt sich mit verschiedenen Prozessen kombinieren.

Die ersten Untersuchungen von LOV-Proteinen mit Hilfe von Neutronenstreuung am Heinz Maier-Leibnitz Zentrum in Garching zeigten nun die Bedeutung der Bewegungen im Inneren der Biomoleküle für ihre Funktionsfähigkeit. Die Forscher analysierten dazu Rezeptoren aus dem Bodenbakterium Pseudomonas putida mit einer zeitlichen Auflösung im Nano- und Pikosekundenbereich.

„Im unbelichteten Protein fanden wir stärkere Bewegungen als im belichteten“, erläutert Dr. Andreas Stadler vom Institute of Complex Systems und Jülich Centre for Neutron Science am Forschungszentrum Jülich. „Die belichtete Version ist steifer, vor allem in bestimmten Bereichen.“

Um herauszufinden, welche Bereiche des Proteins sich bewegen, verglichen die Forscher ihre Neutronenanalysen mit bereits aus Röntgenuntersuchungen bekannten Strukturinformationen von kristallisierten LOV-Proteinen und simulierten zudem potentielle Bewegungen am Computer.

Denn Neutronen können nicht direkt die Bewegungen eines einzelnen Proteinmoleküls erfassen, sondern nur die gemittelten Bewegungen aller Proteine in der Probe. Deshalb sind stets weitere Untersuchungen nötig, um die Ergebnisse richtig interpretieren zu können. „Dann spielen die Neutronen ihre Fähigkeiten wie in diesem Fall optimal aus und können einzigartige Einblicke in die Funktion von biologischen Prozessen liefern“, freut sich Stadler.

Bekannt war bereits, dass im Fall des untersuchten LOV-Proteins jeweils zwei Proteinmoleküle zusammen eine Funktionseinheit bilden. Deren Form erinnert in ihrer aktiven, belichteten Form an einen Hasenkopf mit spitz aufgestellten Ohren. In der nichtaktiven, unbelichteten Form hängen die „Ohren“. Die Bewegungen, die die Forscher nun bei den unbelichteten Proteinen gefunden haben, passen genau zu der Vorstellung, dass dieser Zustand flexibler und beweglicher ist, wohingegen die stehenden „Ohren“ unbeweglicher, steifer sind.

Aus früheren Untersuchungen war ebenfalls bekannt, dass das lichtaktive Zentrum sich jeweils im „Backenbereich“ der Hasenkopfform des Proteins befindet. Bei Belichtung entsteht eine chemische Bindung zwischen dem lichtaktiven Zentrum und einer bestimmten Stelle des Proteinrückrats. Die Forscher gehen nun davon aus, dass die Bildung dieser Bindung zu strukturellen Änderungen führt, die sich durch das Protein bis zu den „Ohren“ fortpflanzen und deren Versteifung und gleichzeitige Verdrehung auslöst. Die „Ohren“ stellen vermutlich den eigentlichen Schalter dar, der daran gekoppelte Proteine aktivieren und deaktivieren kann.

Für die Untersuchung von Proteinen bieten Neutronen viele Vorteile gegenüber anderen Methoden und können komplementäre Informationen liefern. So müssen die Proteine weder gefärbt noch kristallisiert noch anderweitig verändert werden, um sie zu untersuchen. Auch ist das Verfahren sehr sanft zu den Proben, die dadurch länger beobachtet werden können. Und es kann leichte Atome in den Molekülen, unter anderem Wasserstoff, besser detektieren, auch in der natürlichen Umgebung von Proteinen – wässrigen Lösungen.

Bild: Überlagerte Bewegungsstadien eines LOV-Proteins (im Vordergrund), erstellt mit Molekulardynamiksimulation. Die rot eingefärbten Bereiche zeigen die Ausgangsstellung, die blau eingefärbten die Endstellung. Eine funktionsfähige Einheit besteht aus zwei LOV-Domänen – die zweite ist semitransparent im Hintergrund zu sehen. Die lichtabsorbierenden Zentren des Proteins sind in beiden Untereinheiten als Kugel-Stab-Modelle dargestellt.
Quelle: Forschungszentrum Jülich/M. Bocola, RWTH Aachen

Originalveröffentlichung:
Photoactivation reduces side-chain dynamics of a LOV photoreceptor;
A. Stadler et al.;
Biophysical Journal, Volume 10, March 2016, 1061-1074, DOI: 10.1016/j.bpj.2016.01.021

Ansprechpartner:
Dr. Andreas Stadler, Forschungszentrum Jülich, Jülich Centre for Neutron Science - Neutronenstreuung (ICS-1/JCNS-1), Tel. 02461 61-4502, E-Mail: a.stadler@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de - Forschungszentrum Jülich
http://www.fz-juelich.de/ics/DE/ - Institute of Complex Systems
http://www.fz-juelich.de/jcns/ - Jülich Centre for Neutron Science
http://www.fz-juelich.de/ics/ics-1/ - Institutsbereich Neutronenstreuung (ICS-1/JCNS-1)
http://www.iet.uni-duesseldorf.de/ - Institut für Molekulare Enzymtechnologie
http://www.biotec.rwth-aachen.de/index.php?page=home - Lehrstuhl für Biotechnologie, RWTH Aachen
http://mlz-garching.de/ - Heinz Maier-Leibnitz Zentrum

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie