Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelltod per Express oder auf Umwegen

23.07.2009
Ein Hemmer von Todesproteasen entscheidet

Mitochondrien sind die Kraftwerke der Zellen. Sie produzieren unter Sauerstoffverbrauch die meiste Energie.

Diese winzigen Organellen beteiligen sich aber auch an einem Prozess, der dem Leben entgegenwirkt, dem programmierten Zelltod oder Apoptose (griechisch: fallende Blätter). Zusammen mit drei Forschergruppen in Melbourne berichtet die Forschergruppe um Prof. Dr. Christoph Borner von der Universität Freiburg im renommierten Wissenschaftsmagazin Nature (aktuelle online-Veröffentlichung vom 22.07.09: "XIAP discriminates between type I and type II Fas-induced apoptosis") von einem Schlüsselprotein (XIAP), welches entscheidet, ob eine Zelle auf einem direkten, schnellen oder einem etwas umständlicheren Signalweg stirbt. Hauptautor der Publikation ist Thomas Kaufmann, ein ehemaliger Doktorand im Labor von Prof. Borner. Er hat jetzt eine Juniorprofessur an der Universität Bern inne.

In einer gesunden Zelle verstecken Mitochondrien in ihrem Innern Moleküle wie Cytochrome c und Smac/Diablo, die für das Überleben wichtig sind. Muss eine Zelle jedoch sterben, wird die äußere Membran der Mitochondrien perforiert und diese Moleküle treten in die Zellflüssigkeit aus. Cytochrome c aktiviert so genannte Todesproteasen (Caspasen), die Hunderte von Proteinen zerschneiden und die Zelle so zerstückeln, dass sie stirbt. Dieser mitochondriale Weg des Zelluntergangs ist in unserem Körper wichtig, um verbrauchte, beschädigte oder überflüssige Zellen kontrolliert zu eliminieren. Dadurch wird verhindert dass diese schlechten Zellen unserem Körper Schaden zufügen oder gar in Krebszellen ausarten können. Damit diese Todesproteasen nicht zufällig in gesunden Zellen wirken, werden sie durch ein Molekül namens XIAP gehemmt. Durch seine Freisetzung aus Mitochondrien neutralisiert Smac/Diablo die Hemmwirkung von XIAP und garantiert so eine volle Aktivierung der Todesproteasen in sterbenden Zellen.

Neben dem Mitochondrien-getriebenen Signalweg besitzen die Zellen einen direkteren Weg um ihre Todesproteasen zu aktivieren. Dieser wird vor allem von externen Stimuli, sogenannten TNF-ähnlichen Molekülen wie FasL genutzt, die viral infizierte Körperzellen und verbrauchte Abwehrzellen umbringen. Obwohl dieser Weg effizient und schnell abläuft, hat er einen Nachteil: Er kann den Todesproteasen-Hemmer XIAP nicht neutralisieren. Damit kann das volle Aktivierungspotenzial dieser Schneide-Enzyme nicht voll ausgeschöpft werden.

Die Zelle hat jedoch die Fähigkeit zwischen dem direkten "Express"-Signalweg (Typ I) und dem mitochondrialen "Umwege"-Signalweg

(Typ II) zu entscheiden. Wie dieser Entscheidungsprozess abläuft, war bislang unbekannt. Nun konnten australische und Schweizer Forscher unter Mitwirkung einer Forschergruppe der Universität Freiburg unter Prof. Borner zeigen, dass die Menge von XIAP über diesen "Switch" entscheidet. Besitzt eine Zelle viel XIAP, kann sie nur über den mitochondrialen Typ II-Weg effizient sterben, weil dieses Molekül durch Smac/Diablo neutralisiert werden muss. Dies ist oft bei Krebszellen der Fall, die viel XIAP exprimieren. Umgekehrt kann eine Zelle mit wenig XIAP problemlos über den direkten Weg eliminiert werden. Diese Erkenntnis unterstreicht die Wichtigkeit der Entwicklung von neuen Krebsmedikamenten, welche XIAP hemmen und somit den direkten Weg begünstigen. Dies soll vor allem bei Krebsarten zur Anwendung kommen, bei denen der mitochondriale Typ II-Signalweg defekt ist.

Kontakt:
Prof. Dr. Christoph Borner
Professor in Medical Cell Research and
Institute of Molecular Medicine and Cell Research,
Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ)
Stefan-Meier-Straße 17
D-79104 Freiburg, Germany
Tel.: +49-761-203-9681
Fax: +49-761-203-9620
E-Mail: christoph.borner@uniklinik-freiburg.de
Prof. Dr. Borner ist auch Direktor der Spemann Graduiertenschule für Biologie und Medizin (SGBM), einer Einrichtung, die durch die Exzellenzinitiative finanziert wird.

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.mol-med.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie