Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellhülle ist ein molekularer Flickenteppich

03.05.2012
Max-Planck-Forscher entschlüsseln Struktur der Zellhülle

Als Schaltstelle zwischen Zelle und Umwelt erfüllt die Zellmembran eine Vielzahl lebenswichtiger Funktionen. Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München haben jetzt erstmals die molekulare Struktur der aus Fetten und Proteinen aufgebauten Grenzschicht umfassend analysiert und eine präzise Ordnung nachgewiesen:


Die Membran der Hefezelle ist in verschiedene Domänen unterteilt (farbig markiert) und erscheint dadurch wie ein molekularer Flickenteppich. © MPI für Biochemie/Wedlich-Söldner

Bei Hefezellen besteht die gesamte Membran aus sogenannten Domänen, die jeweils eine einzelne oder einige wenige Proteinsorten enthalten. Wird ein Protein in eine fremde Domäne versetzt, kann es sogar seine Funktion verlieren. Die Arbeit zeigt die Membran als eine Art molekularen Flickenteppich und könnte helfen, grundlegende Vorgänge in der Zelle besser zu verstehen.

Die Zellmembran muss viele Signale aus der Umwelt und dem Zellinneren verarbeiten, um bei Bedarf eine passende molekulare Antwort zu initiieren. Docken etwa bestimmte Botenstoffe an die Membran an, kann dies das Wachstum oder die Teilung einer Zelle auslösen. Die Zellmembran steht lange schon im Fokus der Wissenschaft. Weitgehend unklar war dennoch, wie sich ihre einzelnen Bestandteile genau anordnen. Einem frühen Modell zufolge sollten sich die Fette (Lipide) und in der Membran verankerten Proteine frei schwimmend und ohne feste Strukturen bewegen. Erst in den letzten Jahren wurde anhand einiger weniger Proteine eine Organisation in abgegrenzte Domänen nachgewiesen.

Forscher um Roland Wedlich-Söldner, Gruppenleiter am Max-Planck-Institut für Biochemie, haben nun erstmals die molekulare Struktur der Zellmembran umfassend analysiert. Sie nutzten dabei fortgeschrittene Mikroskopietechnik, die einzelne Bereiche der Zellmembran und darin angefärbte Proteine mit bislang unerreichter Deutlichkeit abbildete. Dabei erwies sich die Domäne nicht als Ausnahme, sondern als Regel: Jedes Protein in der Zellmembran liegt in klar abgegrenzten Arealen mit flecken- oder netzwerkartiger Struktur vor. Die Zellmembran besteht damit - wie eine Art molekularer Flickenteppich - flächendeckend aus Domänen.

„Manche Areale bestehen aus mehr als einer Art von Protein", sagt Roland Wedlich-Söldner. „Auch wenn diese Moleküle ganz unterschiedliche Funktionen erfüllen, haben sie aber meist eines gemein: Sie sind über einen ähnlichen oder identischen molekularen Anker in einer gemeinsamen Domäne der Membran fixiert." Wie sehr die Proteine von dieser jeweils spezifischen Umgebung abhängen, konnten die Wissenschaftler in einem weiteren Versuch nachweisen: Sie tauschten bei einigen Proteinen den ursprünglichen Anker gegen eine andere molekulare Variante aus. Die veränderten Proteine gelangten dann in eine "fremde" Domäne - passend zur neuen Verankerung. Dort aber konnten sie ihre Proteinfunktion nicht mehr erfüllen.

Wie aber finden Proteine die passende Domäne und bleiben dort, obwohl sie in der Membran relativ mobil sind? Die Forscher konnten zeigen, dass die Lipide der Zellmembran hier wohl den Ausschlag geben. Sie lagern sich jeweils bevorzugt an bestimmte Proteinanker an. So entstehen Areale, die für Proteine mit ähnlicher Verankerung besonders attraktiv sind. Dies könnte erklären, wie sich Zellmembranen selbst organisieren - eine weitere offene Frage in der Biologie. Die hochgeordnete Struktur der Zellmembran könnte aber auch helfen, deren vielen Funktionen besser zu verstehen. "Vermutlich laufen viele Prozesse nur dank der Domänenbildung in der Zellmembran effizient ab", sagt Wedlich-Söldner. "Möglicherweise macht sich die Zelle zunutze, was auch im täglichen Leben gilt: Ein gewisses Maß an Ordnung erleichtert die Arbeit.“

Originalpublikation
F. Spira, N.S. Mueller, G. Beck, P. von Olshausen, J. Beig, and R. Wedlich-Söldner: Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nature Cell Biology, April 29, 2012.
DOI: 10.1038/ncb2487

Kontakt
Dr. Roland Wedlich-Söldner
Zelluläre Dynamik und Musterbildung
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: wedlich@biochem.mpg.de
www.biochem.mpg.de/wedlich/
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Tel.: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Dr. Roland Wedlich-Söldner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5761526/zellmembran_patchwork

Weitere Berichte zu: Biochemie Domäne Flickenteppich Lipide Membran Protein Verankerung Zelle Zellhülle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE