Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellgewebe darf nicht einfrieren

07.12.2017

Als Frostschutzmittel-Ersatzprotein schützt Polyprolin einlagige Zellkulturen vor Frostschäden

Mit Zuckern, Aminosäuren und speziellen Antifrostproteinen verhindert die Natur Frostschäden an Zellen. Um Zellkulturen vor Schäden durch Einfrieren zu bewahren, versetzen Menschen diese mit Lösungsmitteln und synthetischen Polymeren.


Natürliches Frostschutzmittel für Zellen

(c) Wiley-VCH

Britische Wissenschaftler haben jetzt Natur und Synthese kombiniert: In einer Arbeit, die in der Zeitschrift Angewandte Chemie veröffentlicht wurde, führen sie das rein aus der natürlichen Aminosäure bestehende Polyprolin als wirkungsvolles Frostschutzmittel für einlagige Zellkulturen ein.

Die lebende Zelle ist gegenüber Einfrieren und Auftauen extrem empfindlich. Eiskristalle können die Zellmembran und Organellen mechanisch schädigen, und der Wasserentzug kann die osmotischen Verhältnisse bis zum Platzen der Zellen verändern. Andererseits werden Zellkulturen routinemäßig im tiefgefrorenen, „vitrifizierten“ Zustand gelagert, bevor sie zum Beispiel in der Transplantationsmedizin oder Grundlagenforschung gebraucht werden.

Zum Zweck der Kryokonservierung fügt man Frostschutzmittel wie Dimethylsulfoxid hinzu. Ein Nachteil sind jedoch die notwendigen großen Mengen dieser Lösungsmittel, und längst nicht alle Zellen lassen sich auf diese Weise lebensfähig wiedergewinnen.

Die Natur hat ihre eigenen Frostschutzmittel: Organismen im eiskalten Meerwasser produzieren zum Beispiel Antifrost-Glycoproteine, um die Bildung von Eiskristallen zu vermeiden. Deren Verfügbarkeit für biomedizinische Anwendungen ist jedoch nicht immer gegeben, und die Immuntoleranz ist ein wiederkehrendes Problem.

Mit synthetischen Polymeren kann man, wie man herausgefunden hat, die Antifrostwirkung der Glycoproteine nachahmen. Interessanter wäre jedoch ein einfaches, peptidisches Rückgrat für ein solches Polymer. Diesen Ansatz verfolgt die Gruppe um Matthew Gibson an der Universität Warwick, Großbritannien. Die Wissenschaftler schlagen Polyprolin als vielseitiges alternatives Kryokonservierungsmittel vor. Polyprolin besteht rein aus der natürlichen Aminosäure Prolin.

Die Besonderheit von Prolin ist seine Eigenschaft, im Gegensatz zu anderen Aminosäuren keine Wasserstoffbrücken zu anderen Struktursegmenten ausbilden zu können, wenn es in einem Peptid eingebaut ist. „Infolgedessen ist es gleichzeitig wasserlöslich und ziemlich wasserabweisend, genau wie AFP I“, schreiben die Autoren. AFP I ist ein natürliches Frostschutzprotein.

Den Ergebnissen zufolge hat Polyprolin eine ähnlich strukturierte Oberfläche wie natürliche Frostschutzproteine. Dieses „fleckenartige“ löslich-unlösliche Strukturmotiv scheint beim Auftauen hilfreich zu sein, um die Umkrstallisation von Eis zu unterbinden. Die freie Aminosäure Prolin ist übrigens selbst ein natürliches Frostschutzmittel: Pflanzenzellen produzieren besonders viel Prolin, um bei kalten Temperaturen ihr osmotisches Gleichgewicht zu behalten und sich vor Austrocknung zu schützen.

Diese Kombination von Prolin/Polyprolin setzten die Wissenschaftler dann für ein Gefrier-Tau-Testsystem von adhärenten Zellkulturen ein. Zunächst inkubierten sie die Zell-Einzelschicht mit einer Mischung aus Dimethylsulfoxid und Prolin, dann fügten sie Polyprolin hinzu. Gegenüber der Kontrolle ohne Polyprolin, nur mit Dimethylsulfoxid, hatten doppelt so viele Zellen überlebt.

Das bedeutet, dass für die Kryokonservierung deutlich weniger Lösungsmittel verwendet werden muss und die Zellen in einer möglichst natürlichen Umgebung bleiben können. Obwohl weitere Analysen zeigen müssen, ob tatsächlich alle Zellfunktionen erhalten bleiben, präsentierten die Autoren mit dieser Arbeit Polyprolin als höchst interessantes Biopolymer, das nur aus natürlichen Bausteinen besteht und die Eiskristallbildung für die biologische Lagerung wirkungsvoll unterbindet.

Angewandte Chemie: Presseinfo 47/2017

Autor: Matthew I. Gibson, University of Warwick, Coventry (United Kingdom), https://www2.warwick.ac.uk/fac/sci/chemistry/research/gibson/

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201706703

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics