Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellerneuerung und zelluläre Qualitätskontrolle besser verstehen

24.11.2015

Die Deutsche Forschungsgemeinschaft (DFG) fördert in den kommenden vier Jahren einen neuen Sonderforschungsbereich (SFB) zur selektiven Autophagie unter Federführung der Goethe-Universität mit insgesamt 11 Millionen Euro. Die selektive Autophagie ist ein zellulärer Abbauprozess, der unter anderem vor Krankheiten schützt. Ziel des SFBs ist, die Prozesse auf molekularer und zellulärer Ebene besser zu verstehen und langfristig Erkrankungen gezielter therapieren zu können.

Die Deutsche Forschungsgemeinschaft (DFG) fördert in den kommenden vier Jahren einen neuen Sonderforschungsbereich (SFB) zur selektiven Autophagie unter Federführung der Goethe-Universität mit insgesamt 11 Mio. Euro. Die selektive Autophagie ist ein wichtiger Abbauprozess, mit dem Zellen schädlichen Ballast und andere überflüssige Bestandteile entsorgen.

Er trägt zur regelmäßigen Zellerneuerung und zur Qualitätskontrolle bei und schützt so vor Erkrankungen. Fehler in diesem System können die Entstehung von Krebs, Morbus Parkinson, Infektionskrankheiten und Entzündungsreaktionen befördern.

Ziel des SFBs ist, die Autophagie auf molekularer und zellulärer Ebene besser zu verstehen. Die Forscher hoffen, diese Prozesse künftig gezielt mit Wirkstoffen beeinflussen zu können, um die Therapie von Erkrankungen zu verbessern.

Universitätspräsidentin Prof. Birgitta Wolff gratulierte:„Glückwunsch an Ivan Dikic und sein Team für diesen wichtigen Erfolg! Grundlagenforschung dieser Gruppe bildet eine vielversprechende Basis für die Entwicklung neuer, wirksamerer Therapien. Besonders freuen wir uns, dass wir diesen SFB auch in Zusammenarbeit mit der Uni Mainz, dem Mainzer Institut für Molekulare Biologie und dem Georg-Speyer Haus realisieren – ein weiteres Zeichen für die Vitalität unserer regionalen Kooperation.“

Die Autophagie findet sich in einfachen Organismen wie der Hefezelle bis hin zu komplexen Lebewesen wie dem Menschen. Über diesen Prozess werden beispielsweise verklumpte Proteine vernichtet, die zu schweren Schäden in Zellen und zum Zelluntergang führen können. Das ist bei zahlreichen neurodegenerativen Erkrankungen zu beobachten.

Sogar ganze Zellorganellen können mit Hilfe der Autophagie abgebaut werden. Ebenso werden auf diesem Weg in die Zelle eingedrungene Viren oder Bakterien unschädlich gemacht. Die dabei zurück gewonnenen Bausteine kann die Zelle als Rohstoffe wieder verwerten, weshalb Autophagie auch eine Strategie ist, in Zeiten mangelnder Energiezufuhr zu überleben.

Die Autophagie ist ein hoch komplizierter, sehr exakt regulierter Prozess, der die konzertierte Aktion zahlreicher Mitspieler erfordert: Das abzubauende Substrat wird zunächst spezifisch erkannt und in Membranen zum sogenannten Autophagosom verpackt. Dieses fusioniert mit größeren Zellorganellen, den mit Verdaungsenzymen gefüllten Lysosomen, die dann die Ladung in die einzelnen Bausteine zerlegen.

„Erst in den vergangenen 10 Jahren wurde die enorme Bedeutung der Autophagie für die Gesundheit erkannt. Daraufhin sind die Forschungsaktivitäten zu diesem Thema weltweit rasant angestiegen“, erklärt Prof. Ivan Dikic, Sprecher des SFBs und Direktor des Instituts für Biochemie II an der Goethe-Universität.

„Durch die Rekrutierung neuer Gruppenleiter ist es uns gelungen, Frankfurt zu einem Zentrum für Autophagie-Forschung auszubauen. Das ermöglicht uns nun, die vielen offenen Fragen anzugehen: Wodurch wird Autophagie ausgelöst? Woher ‚weiß‘ die Zelle, welche Bestandteile sie abbauen soll? Wie funktioniert die Abstimmung mit anderen zellulären Mechanismen?“

Bekannt ist mittlerweile, dass die Rolle der Autophagie stark vom zellulären Kontext abhängt: In gesunden Zellen verhindert sie die Entstehung von Krebszellen. Gleichzeitig nutzen Krebszellen jedoch die Autophagie zu ihren eigenen Gunsten aus, um Nährstoff-Engpässe, die durch schnelles Tumorwachstum entstehen, zu überstehen. Diesem komplexen Zusammenspiel sind die Wissenschaftler auf der Spur. Wenig erforscht ist auch die Wechselwirkung der Autophagie mit anderen Mechanismen wie dem zellulären Membrantransport (Endozytose), dem programmierten Zelltod (Apoptose) und dem Ubiquitin-System, das Proteine für den Abbau im Proteasom markiert.

In dem neuen SFB wollen die Forscher die Autophagie auf der Ebene von Molekülen, Zellen und Modell-Organismen studieren. Er ist das erste großangelegte Verbundprojekt zu dieser Thematik innerhalb Deutschlands und ermöglicht es den Frankfurter und Mainzer Forschern, sich in einem international sehr kompetitiven Feld zu positionieren. Erforderlich hierfür ist eine breite Aufstellung über viele Disziplinen, und so sind innerhalb des Netzwerkes Strukturbiologen ebenso vertreten wie Biochemiker, Zellbiologen und Mediziner aus der Klinik. Die gewonnenen Erkenntnisse zu den molekularen Mechanismen sollen direkt in Modellsystemen für menschliche Erkrankungen verwertet werden.

Von der Goethe-Universität ist neben den Fachbereichen Biowissenschaften, Biochemie, Chemie und Pharmazie sowie Medizin auch das Buchmann Institut für Molekulare Lebenswissenschaften beteiligt. Kooperationspartner sind das Institut für Pathobiochemie an der Universitätsmedizin der Johannes-Gutenberg Universität Mainz (Prof. Dr. Christian Behl ist Vizesprecher des SFBs), das Georg-Speyer-Haus in Frankfurt und das Institut für Molekulare Biologie gGmbH, Mainz.

Informationen: Prof. Ivan Dikic, Institut für Biochemie II, Universitätsklinikum, Tel.: (069) 6301-5652, Ivan.Dikic@biochem2.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen