Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellerneuerung und zelluläre Qualitätskontrolle besser verstehen

24.11.2015

Die Deutsche Forschungsgemeinschaft (DFG) fördert in den kommenden vier Jahren einen neuen Sonderforschungsbereich (SFB) zur selektiven Autophagie unter Federführung der Goethe-Universität mit insgesamt 11 Millionen Euro. Die selektive Autophagie ist ein zellulärer Abbauprozess, der unter anderem vor Krankheiten schützt. Ziel des SFBs ist, die Prozesse auf molekularer und zellulärer Ebene besser zu verstehen und langfristig Erkrankungen gezielter therapieren zu können.

Die Deutsche Forschungsgemeinschaft (DFG) fördert in den kommenden vier Jahren einen neuen Sonderforschungsbereich (SFB) zur selektiven Autophagie unter Federführung der Goethe-Universität mit insgesamt 11 Mio. Euro. Die selektive Autophagie ist ein wichtiger Abbauprozess, mit dem Zellen schädlichen Ballast und andere überflüssige Bestandteile entsorgen.

Er trägt zur regelmäßigen Zellerneuerung und zur Qualitätskontrolle bei und schützt so vor Erkrankungen. Fehler in diesem System können die Entstehung von Krebs, Morbus Parkinson, Infektionskrankheiten und Entzündungsreaktionen befördern.

Ziel des SFBs ist, die Autophagie auf molekularer und zellulärer Ebene besser zu verstehen. Die Forscher hoffen, diese Prozesse künftig gezielt mit Wirkstoffen beeinflussen zu können, um die Therapie von Erkrankungen zu verbessern.

Universitätspräsidentin Prof. Birgitta Wolff gratulierte:„Glückwunsch an Ivan Dikic und sein Team für diesen wichtigen Erfolg! Grundlagenforschung dieser Gruppe bildet eine vielversprechende Basis für die Entwicklung neuer, wirksamerer Therapien. Besonders freuen wir uns, dass wir diesen SFB auch in Zusammenarbeit mit der Uni Mainz, dem Mainzer Institut für Molekulare Biologie und dem Georg-Speyer Haus realisieren – ein weiteres Zeichen für die Vitalität unserer regionalen Kooperation.“

Die Autophagie findet sich in einfachen Organismen wie der Hefezelle bis hin zu komplexen Lebewesen wie dem Menschen. Über diesen Prozess werden beispielsweise verklumpte Proteine vernichtet, die zu schweren Schäden in Zellen und zum Zelluntergang führen können. Das ist bei zahlreichen neurodegenerativen Erkrankungen zu beobachten.

Sogar ganze Zellorganellen können mit Hilfe der Autophagie abgebaut werden. Ebenso werden auf diesem Weg in die Zelle eingedrungene Viren oder Bakterien unschädlich gemacht. Die dabei zurück gewonnenen Bausteine kann die Zelle als Rohstoffe wieder verwerten, weshalb Autophagie auch eine Strategie ist, in Zeiten mangelnder Energiezufuhr zu überleben.

Die Autophagie ist ein hoch komplizierter, sehr exakt regulierter Prozess, der die konzertierte Aktion zahlreicher Mitspieler erfordert: Das abzubauende Substrat wird zunächst spezifisch erkannt und in Membranen zum sogenannten Autophagosom verpackt. Dieses fusioniert mit größeren Zellorganellen, den mit Verdaungsenzymen gefüllten Lysosomen, die dann die Ladung in die einzelnen Bausteine zerlegen.

„Erst in den vergangenen 10 Jahren wurde die enorme Bedeutung der Autophagie für die Gesundheit erkannt. Daraufhin sind die Forschungsaktivitäten zu diesem Thema weltweit rasant angestiegen“, erklärt Prof. Ivan Dikic, Sprecher des SFBs und Direktor des Instituts für Biochemie II an der Goethe-Universität.

„Durch die Rekrutierung neuer Gruppenleiter ist es uns gelungen, Frankfurt zu einem Zentrum für Autophagie-Forschung auszubauen. Das ermöglicht uns nun, die vielen offenen Fragen anzugehen: Wodurch wird Autophagie ausgelöst? Woher ‚weiß‘ die Zelle, welche Bestandteile sie abbauen soll? Wie funktioniert die Abstimmung mit anderen zellulären Mechanismen?“

Bekannt ist mittlerweile, dass die Rolle der Autophagie stark vom zellulären Kontext abhängt: In gesunden Zellen verhindert sie die Entstehung von Krebszellen. Gleichzeitig nutzen Krebszellen jedoch die Autophagie zu ihren eigenen Gunsten aus, um Nährstoff-Engpässe, die durch schnelles Tumorwachstum entstehen, zu überstehen. Diesem komplexen Zusammenspiel sind die Wissenschaftler auf der Spur. Wenig erforscht ist auch die Wechselwirkung der Autophagie mit anderen Mechanismen wie dem zellulären Membrantransport (Endozytose), dem programmierten Zelltod (Apoptose) und dem Ubiquitin-System, das Proteine für den Abbau im Proteasom markiert.

In dem neuen SFB wollen die Forscher die Autophagie auf der Ebene von Molekülen, Zellen und Modell-Organismen studieren. Er ist das erste großangelegte Verbundprojekt zu dieser Thematik innerhalb Deutschlands und ermöglicht es den Frankfurter und Mainzer Forschern, sich in einem international sehr kompetitiven Feld zu positionieren. Erforderlich hierfür ist eine breite Aufstellung über viele Disziplinen, und so sind innerhalb des Netzwerkes Strukturbiologen ebenso vertreten wie Biochemiker, Zellbiologen und Mediziner aus der Klinik. Die gewonnenen Erkenntnisse zu den molekularen Mechanismen sollen direkt in Modellsystemen für menschliche Erkrankungen verwertet werden.

Von der Goethe-Universität ist neben den Fachbereichen Biowissenschaften, Biochemie, Chemie und Pharmazie sowie Medizin auch das Buchmann Institut für Molekulare Lebenswissenschaften beteiligt. Kooperationspartner sind das Institut für Pathobiochemie an der Universitätsmedizin der Johannes-Gutenberg Universität Mainz (Prof. Dr. Christian Behl ist Vizesprecher des SFBs), das Georg-Speyer-Haus in Frankfurt und das Institut für Molekulare Biologie gGmbH, Mainz.

Informationen: Prof. Ivan Dikic, Institut für Biochemie II, Universitätsklinikum, Tel.: (069) 6301-5652, Ivan.Dikic@biochem2.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie