Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen verschicken Stoppschilder

04.07.2016

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sind für die Zellkommunikation essentiell. Sie leiten junge Nervenzellen zu den richtigen Partnerzellen und spielen bei der Zellwanderung, Regeneration, neurodegenerativen Erkrankungen und der Krebsentwicklung eine wichtige Rolle. Bislang gingen Wissenschaftler davon aus, dass die Signalübertragung nur durch direkten Zell-zu-Zell-Kontakt möglich ist. Wissenschaftler am Max-Planck-Institut für Neurobiologie zeigen nun, dass Zellen Ephrine und Eph-Rezeptoren auch verpacken und verschicken können. Neben einem besseren Verständnis dieses Kommunikationssystems eröffnet die Entdeckung eventuell auch neue therapeutische Ansätze.

Der menschliche Körper enthält bis zu 100 Billionen Zellen. Diese Zellen wachsen, wandern, vermehren und bewegen sich. Dabei treten die Zellen mit unzähligen anderen Zellen in Kontakt und tauschen Informationen aus.


Membranständige Signalmoleküle können Nervenzellfortsätze auch über die Distanz hinweg zum Rückzug bewegen.

MPI für Neurobiologie / Gong

Diese Kommunikation erfolgt zum Beispiel über das Ephrin/Eph-Rezeptorsystem, das auf diese Weise die Zellwanderung und das Auswachsen von Nervenzellen steuern kann. Doch auch bei plastischen Prozessen wie Lernen und Regeneration, oder beim Krebswachstum und neurodegenerativen Erkrankungen spielt das Ephrin/Eph-System eine Rolle.

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sitzen auf der Oberfläche fast aller Zellen. Treffen Ephrin und Eph-Rezeptor zweier Zellen aufeinander, bilden sie einen Ephrin/Eph-Komplex. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die in den meisten Fällen zur Trennung des Komplexes und zur Abstoßung einer der beiden Zellen führt.

Die abgestoßene Zelle bewegt sich oder wächst dann in eine andere Richtung. Im Nervensystem lenken viele solcher Interaktionen die Fortsätze junger Nervenzellen zu den richtigen Zielorten.

„Es ist daher von grundlegender Bedeutung zu verstehen, wie Zellen über dieses System kommunizieren“, sagt Rüdiger Klein, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie Ephrine und Eph-Rezeptoren untersucht. Bisher schien sicher, dass Ephrin und Eph nur bei direktem Kontakt zweier Zellen einen Signalprozess auslösen können.

In letzter Zeit waren Ephrine und Eph-Rezeptoren jedoch auch in sogenannten Exosomen gefunden worden. Exosome sind kleine Fetttröpfchen, die von Zellen an ihre Umgebung abgegeben werden und zum Beispiel als Transportvehikel, Signalüberträger oder zur Ausscheidung von Zellbestandteilen dienen. "Dies hat die interessante Frage aufgeworfen, was Ephs und Ephrine in den Exosomen zu suchen haben", so Klein.

In einer aufwändigen Laborstudie haben die Martinsrieder Neurobiologen daher Exosome verschiedener Zelltypen, darunter auch Nervenzellen, aufgereinigt und den Inhalt analysiert. Sie konnten zeigen, dass Ephrine und Ephs in vielen dieser Exosome enthaltenen waren, und entschlüsselten den zellulären Mechanismus über den sie in die Exosome verpackt werden. Interessanterweise zeigte eine weitere Analyse, dass Eph-Rezeptoren nicht als Abfallprodukt in den Exosomen entsorgt wurden, sondern dort aktiv blieben: Auch Eph-Rezeptoren aus Exosomen konnten an Ephrin-Moleküle auf der Oberfläche auswachsender Nervenzellen binden und so das Zurückziehen der Zellfortsätze auslösen.

Dies belegt erstmals, dass Zellen auch über Distanzen hinweg Ephrine und Ephs als Signalgeber versenden können. "Das eröffnet eine ganze Reihe neuer Möglichkeiten", freut sich Rüdiger Klein. Unter anderem wurden Ephrine und Eph-Rezeptoren auch in den Exosomen von Krebszellen gefunden. "Es wäre daher denkbar, dass Strategien, die die Exosom-Ausschüttung steuern, auch die Ephrin-Eph-Signalkette unterbrechen und somit das Tumorwachstum stören könnten", so Klein.

ORIGINALVERÖFFENTLICHUNG
Jingyi Gong, Roman Körner, Louise Gaitanos, Rüdiger Klein
Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance
Journal of Cell Biology, 04. Juli 2016

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung "Moleküle – Signale – Entwicklung"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3150
Email: rklein@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/klein/de - Die Abteilung von Prof. Rüdiger Klein

Dr. Stefanie Merker |

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie