Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen verschicken Stoppschilder

04.07.2016

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sind für die Zellkommunikation essentiell. Sie leiten junge Nervenzellen zu den richtigen Partnerzellen und spielen bei der Zellwanderung, Regeneration, neurodegenerativen Erkrankungen und der Krebsentwicklung eine wichtige Rolle. Bislang gingen Wissenschaftler davon aus, dass die Signalübertragung nur durch direkten Zell-zu-Zell-Kontakt möglich ist. Wissenschaftler am Max-Planck-Institut für Neurobiologie zeigen nun, dass Zellen Ephrine und Eph-Rezeptoren auch verpacken und verschicken können. Neben einem besseren Verständnis dieses Kommunikationssystems eröffnet die Entdeckung eventuell auch neue therapeutische Ansätze.

Der menschliche Körper enthält bis zu 100 Billionen Zellen. Diese Zellen wachsen, wandern, vermehren und bewegen sich. Dabei treten die Zellen mit unzähligen anderen Zellen in Kontakt und tauschen Informationen aus.


Membranständige Signalmoleküle können Nervenzellfortsätze auch über die Distanz hinweg zum Rückzug bewegen.

MPI für Neurobiologie / Gong

Diese Kommunikation erfolgt zum Beispiel über das Ephrin/Eph-Rezeptorsystem, das auf diese Weise die Zellwanderung und das Auswachsen von Nervenzellen steuern kann. Doch auch bei plastischen Prozessen wie Lernen und Regeneration, oder beim Krebswachstum und neurodegenerativen Erkrankungen spielt das Ephrin/Eph-System eine Rolle.

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sitzen auf der Oberfläche fast aller Zellen. Treffen Ephrin und Eph-Rezeptor zweier Zellen aufeinander, bilden sie einen Ephrin/Eph-Komplex. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die in den meisten Fällen zur Trennung des Komplexes und zur Abstoßung einer der beiden Zellen führt.

Die abgestoßene Zelle bewegt sich oder wächst dann in eine andere Richtung. Im Nervensystem lenken viele solcher Interaktionen die Fortsätze junger Nervenzellen zu den richtigen Zielorten.

„Es ist daher von grundlegender Bedeutung zu verstehen, wie Zellen über dieses System kommunizieren“, sagt Rüdiger Klein, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie Ephrine und Eph-Rezeptoren untersucht. Bisher schien sicher, dass Ephrin und Eph nur bei direktem Kontakt zweier Zellen einen Signalprozess auslösen können.

In letzter Zeit waren Ephrine und Eph-Rezeptoren jedoch auch in sogenannten Exosomen gefunden worden. Exosome sind kleine Fetttröpfchen, die von Zellen an ihre Umgebung abgegeben werden und zum Beispiel als Transportvehikel, Signalüberträger oder zur Ausscheidung von Zellbestandteilen dienen. "Dies hat die interessante Frage aufgeworfen, was Ephs und Ephrine in den Exosomen zu suchen haben", so Klein.

In einer aufwändigen Laborstudie haben die Martinsrieder Neurobiologen daher Exosome verschiedener Zelltypen, darunter auch Nervenzellen, aufgereinigt und den Inhalt analysiert. Sie konnten zeigen, dass Ephrine und Ephs in vielen dieser Exosome enthaltenen waren, und entschlüsselten den zellulären Mechanismus über den sie in die Exosome verpackt werden. Interessanterweise zeigte eine weitere Analyse, dass Eph-Rezeptoren nicht als Abfallprodukt in den Exosomen entsorgt wurden, sondern dort aktiv blieben: Auch Eph-Rezeptoren aus Exosomen konnten an Ephrin-Moleküle auf der Oberfläche auswachsender Nervenzellen binden und so das Zurückziehen der Zellfortsätze auslösen.

Dies belegt erstmals, dass Zellen auch über Distanzen hinweg Ephrine und Ephs als Signalgeber versenden können. "Das eröffnet eine ganze Reihe neuer Möglichkeiten", freut sich Rüdiger Klein. Unter anderem wurden Ephrine und Eph-Rezeptoren auch in den Exosomen von Krebszellen gefunden. "Es wäre daher denkbar, dass Strategien, die die Exosom-Ausschüttung steuern, auch die Ephrin-Eph-Signalkette unterbrechen und somit das Tumorwachstum stören könnten", so Klein.

ORIGINALVERÖFFENTLICHUNG
Jingyi Gong, Roman Körner, Louise Gaitanos, Rüdiger Klein
Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance
Journal of Cell Biology, 04. Juli 2016

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung "Moleküle – Signale – Entwicklung"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3150
Email: rklein@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/klein/de - Die Abteilung von Prof. Rüdiger Klein

Dr. Stefanie Merker |

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen