Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen sehen doppelt

09.02.2009
Im Vergleich zu vielen anderen Lebewesen sind Fliegen eher klein und ihr Gehirn ist recht übersichtlich. Allerdings kann die geringe Anzahl der Nervenzellen im Fliegenhirn zum Teil durch raffinierte Verschaltung kompensiert werden, fanden Wissenschaftler des Max-Planck-Instituts für Neurobiologie heraus.

Die Neurobiologen untersuchten spezielle Nervenzellen, die in ihrem Eingangsbereich Bewegungsreize aus einem schmalen Bereich des Sehfelds erhalten. Durch Verschaltung mit Nachbarzellen reagieren dieselben Zellen in ihrem Ausgangsbereich jedoch auf Bewegungen aus einem viel breiteren Sehbereich. Dies ermöglicht eine äußerst robuste Verarbeitung von optischen Informationen. (Nat Neurosci)


Arbeitsteilung im Flugkontrollzentrum: In ihrem Eingangsbereich (breites Zellende) erhält jede VS-Nervenzelle visuelle Informationen aus einen schmalen Streifen des Fliegenauges. Im Ausgangsbereich am hinteren Zellende, ermöglichen elektrische Querverbindungen (rot) den Austausch mit Nachbarzellen. Grafik: Max-Planck-Institut für Neurobiologie / Schorner

Kaum etwas ist komplexer als das menschliche Gehirn: Jede der rund hundert Milliarden Nervenzellen ist über viele tausend Kontaktstellen mit ihren Nachbarzellen verbunden. So entsteht ein vielschichtiges Netzwerk, in dem Informationen verarbeitet und gespeichert werden. Im Vergleich dazu erscheint das Gehirn einer Fliege eher simpel. Im Schmeißfliegen-Gehirn werden zum Beispiel Bewegungsinformationen von gerade einmal 60 Nervenzellen pro Hirnhälfte verarbeitet und die entsprechenden Befehle an die Flugsteuerung weitergegeben. Die eindrucksvolle Effizienz dieser 60 Zellen demonstriert die Fliege jedoch, wenn sie im rasanten Flug Hindernisse meidet und kopfüber an der Decke landet. Es ist daher kein Wunder, dass das Fliegenhirn Neurobiologen schon lange fasziniert.

Verteilung der Wenigen
Die vergleichsweise wenigen Nervenzellen im Flugkontrollzentrum der Fliege ermöglichen es, die Verschaltung und Funktion der beteiligten Zellen genauer zu untersuchen. Schnell hat sich dabei gezeigt, dass die 60 Nervenzellen noch einmal in einzelne Zellgruppen unterteilt sind, die jeweils für die Verarbeitung bestimmter Bewegungsmuster zuständig sind. Zum Beispiel reagieren die zehn sogenannten VS-Zellen auf Rotationsbewegungen der Fliege. Jede dieser Nervenzellen erhält ihre visuellen Informationen nur aus einem schmalen vertikalen Streifen des Fliegenauges, ihrem 'rezeptiven Feld'. Da die Zellen parallel zueinander angeordnet sind, decken diese vertikalen Streifen das gesamte Sehfeld der Fliege ab (exemplarisch zeigt die Abbildung drei der zehn VS-Zellen).
Komplexität durch Verschaltung
"Das wirklich Faszinierende an diesen VS-Zellen ist jedoch, dass das Netzwerk immer komplexer wurde, je genauer wir hinsahen", berichtet Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie das Bewegungssehen der Fliegen untersucht. Erst vor kurzem zeigte sein Mitarbeiter Jürgen Haag, dass VS-Zellen gleich auf zwei Ebenen verschaltet sind: In ihrem Eingangsbereich sammeln sie eingehende Informationen von Nervenzellen, die Bewegungsinformationen vom Auge erhalten. Unerwartet war jedoch, dass die Zellen zusätzlich in ihrem Ausgangsbereich über elektrische Verbindungen mit benachbarten VS-Zellen in Kontakt stehen. Computersimulationen dieser Verschaltung ließen Folgendes vermuten: Bekommt eine VS-Zelle Informationen aus "ihrem" rezeptiven Feld, vergleicht sie diese erst noch mit den Informationen ihrer Nachbarzellen. Erst dann wird die Information an nachgeschaltete Zellen für die Flugsteuerung weitergeleitet.
Dem Rätsel auf der Spur
Die logische Schlussfolgerung dieser Annahmen war eine kleine Sensation. Konnte es tatsächlich sein, dass eine einzelne Zelle zwei unterschiedliche rezeptive Felder besitzt - je nachdem, ob ihr Eingangs- oder ihr Ausgangsbereich betrachtet wird? Dieser Frage ging der Martinsrieder Neurobiologe Yishai Elyada nun auf den Grund. Mit einer Vielzahl von Methoden untersuchte er die Reaktionen der VS-Zellen auf Bewegungsreize. Der Durchbruch gelang, als der Wissenschaftler die Änderungen der zellinternen Kalziumkonzentrationen in einem speziellen Mikroskopierverfahren im wahrsten Sinne des Wortes unter die Lupe nahm. Die Kalziumkonzentration einer Nervenzelle ändert sich immer dann, wenn die Zelle aktiv ist. Eine Kalziumveränderung gibt daher preis, wann und wo eine Nervenzelle auf einen Reiz reagiert.

Um das rezeptive Feld einzelner VS-Zellen zu bestimmen, zeigte Elyada den Fliegen bewegte Streifenmuster. Die gleichzeitige Beobachtung der zellinternen Kalziumveränderungen bestätigte alle Vermutungen: VS-Zellen reagieren in ihrem Eingangsbereich tatsächlich nur auf Bewegungen aus einem schmalen Bereich des Sehfelds. Im Ausgangsbereich der Zelle reagieren sie dagegen zusätzlich auch auf Bewegungen in den rezeptiven Feldern der Nachbarzellen. Die gängige Aussage, dass eine Nervenzelle ein bestimmtes rezeptives Feld besitzt, muss daher korrigiert werden. Zumindest bei VS-Zellen sollte bei solchen Aussagen in Zukunft zwischen dem Eingangs- und dem Ausgangsbereich der Zelle unterschieden werden. Diese räumliche Trennung innerhalb einer Nervenzelle war für die Forscher überraschend. Für die Fliege erweist sie sich jedoch als äußerst nützlich. Modell-Simulationen zeigten, dass ein Netzwerk sehr viel effizienter in der Bearbeitung von visuellen Bewegungsinformation ist, wenn es aus solchen "doppeltverschalteten" Zellen besteht.

Allmähliches Herantasten
"Dieses Ergebnis macht das Netzwerk der VS-Zellen zu einem der am besten verstandenen Schaltkreise des Nervensystems", fasst Alexander Borst die Arbeiten der letzen Jahre zusammen. Als nächstes wollen die Wissenschaftler nun untersuchen, ob eine Störung des VS-Netzwerks einen direkten Einfluss auf die Flugkünste der Fliege hat. "Denn wenn es darum geht, ein bestimmtes Verhalten zu beeinflussen, könnten bisher noch nicht berücksichtigte Zellen und Netzwerke an Bedeutung gewinnen", spekuliert Borst. Schritt um Schritt tasten sich die Forscher so an immer komplexere Netzwerke heran - damit wir eines Tages vielleicht auch die menschliche Sinnesverarbeitung auf der Ebene einzelner Nervenzellen verstehen.
Originalveröffentlichung:
Yishai M. Elyada, Jürgen Haag, Alexander Borst
Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons

Nature Neuroscience, 8. Februar 2009

Kontakt:
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
Email: merker@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/rd/scn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise