Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen sehen doppelt

09.02.2009
Im Vergleich zu vielen anderen Lebewesen sind Fliegen eher klein und ihr Gehirn ist recht übersichtlich. Allerdings kann die geringe Anzahl der Nervenzellen im Fliegenhirn zum Teil durch raffinierte Verschaltung kompensiert werden, fanden Wissenschaftler des Max-Planck-Instituts für Neurobiologie heraus.

Die Neurobiologen untersuchten spezielle Nervenzellen, die in ihrem Eingangsbereich Bewegungsreize aus einem schmalen Bereich des Sehfelds erhalten. Durch Verschaltung mit Nachbarzellen reagieren dieselben Zellen in ihrem Ausgangsbereich jedoch auf Bewegungen aus einem viel breiteren Sehbereich. Dies ermöglicht eine äußerst robuste Verarbeitung von optischen Informationen. (Nat Neurosci)


Arbeitsteilung im Flugkontrollzentrum: In ihrem Eingangsbereich (breites Zellende) erhält jede VS-Nervenzelle visuelle Informationen aus einen schmalen Streifen des Fliegenauges. Im Ausgangsbereich am hinteren Zellende, ermöglichen elektrische Querverbindungen (rot) den Austausch mit Nachbarzellen. Grafik: Max-Planck-Institut für Neurobiologie / Schorner

Kaum etwas ist komplexer als das menschliche Gehirn: Jede der rund hundert Milliarden Nervenzellen ist über viele tausend Kontaktstellen mit ihren Nachbarzellen verbunden. So entsteht ein vielschichtiges Netzwerk, in dem Informationen verarbeitet und gespeichert werden. Im Vergleich dazu erscheint das Gehirn einer Fliege eher simpel. Im Schmeißfliegen-Gehirn werden zum Beispiel Bewegungsinformationen von gerade einmal 60 Nervenzellen pro Hirnhälfte verarbeitet und die entsprechenden Befehle an die Flugsteuerung weitergegeben. Die eindrucksvolle Effizienz dieser 60 Zellen demonstriert die Fliege jedoch, wenn sie im rasanten Flug Hindernisse meidet und kopfüber an der Decke landet. Es ist daher kein Wunder, dass das Fliegenhirn Neurobiologen schon lange fasziniert.

Verteilung der Wenigen
Die vergleichsweise wenigen Nervenzellen im Flugkontrollzentrum der Fliege ermöglichen es, die Verschaltung und Funktion der beteiligten Zellen genauer zu untersuchen. Schnell hat sich dabei gezeigt, dass die 60 Nervenzellen noch einmal in einzelne Zellgruppen unterteilt sind, die jeweils für die Verarbeitung bestimmter Bewegungsmuster zuständig sind. Zum Beispiel reagieren die zehn sogenannten VS-Zellen auf Rotationsbewegungen der Fliege. Jede dieser Nervenzellen erhält ihre visuellen Informationen nur aus einem schmalen vertikalen Streifen des Fliegenauges, ihrem 'rezeptiven Feld'. Da die Zellen parallel zueinander angeordnet sind, decken diese vertikalen Streifen das gesamte Sehfeld der Fliege ab (exemplarisch zeigt die Abbildung drei der zehn VS-Zellen).
Komplexität durch Verschaltung
"Das wirklich Faszinierende an diesen VS-Zellen ist jedoch, dass das Netzwerk immer komplexer wurde, je genauer wir hinsahen", berichtet Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie das Bewegungssehen der Fliegen untersucht. Erst vor kurzem zeigte sein Mitarbeiter Jürgen Haag, dass VS-Zellen gleich auf zwei Ebenen verschaltet sind: In ihrem Eingangsbereich sammeln sie eingehende Informationen von Nervenzellen, die Bewegungsinformationen vom Auge erhalten. Unerwartet war jedoch, dass die Zellen zusätzlich in ihrem Ausgangsbereich über elektrische Verbindungen mit benachbarten VS-Zellen in Kontakt stehen. Computersimulationen dieser Verschaltung ließen Folgendes vermuten: Bekommt eine VS-Zelle Informationen aus "ihrem" rezeptiven Feld, vergleicht sie diese erst noch mit den Informationen ihrer Nachbarzellen. Erst dann wird die Information an nachgeschaltete Zellen für die Flugsteuerung weitergeleitet.
Dem Rätsel auf der Spur
Die logische Schlussfolgerung dieser Annahmen war eine kleine Sensation. Konnte es tatsächlich sein, dass eine einzelne Zelle zwei unterschiedliche rezeptive Felder besitzt - je nachdem, ob ihr Eingangs- oder ihr Ausgangsbereich betrachtet wird? Dieser Frage ging der Martinsrieder Neurobiologe Yishai Elyada nun auf den Grund. Mit einer Vielzahl von Methoden untersuchte er die Reaktionen der VS-Zellen auf Bewegungsreize. Der Durchbruch gelang, als der Wissenschaftler die Änderungen der zellinternen Kalziumkonzentrationen in einem speziellen Mikroskopierverfahren im wahrsten Sinne des Wortes unter die Lupe nahm. Die Kalziumkonzentration einer Nervenzelle ändert sich immer dann, wenn die Zelle aktiv ist. Eine Kalziumveränderung gibt daher preis, wann und wo eine Nervenzelle auf einen Reiz reagiert.

Um das rezeptive Feld einzelner VS-Zellen zu bestimmen, zeigte Elyada den Fliegen bewegte Streifenmuster. Die gleichzeitige Beobachtung der zellinternen Kalziumveränderungen bestätigte alle Vermutungen: VS-Zellen reagieren in ihrem Eingangsbereich tatsächlich nur auf Bewegungen aus einem schmalen Bereich des Sehfelds. Im Ausgangsbereich der Zelle reagieren sie dagegen zusätzlich auch auf Bewegungen in den rezeptiven Feldern der Nachbarzellen. Die gängige Aussage, dass eine Nervenzelle ein bestimmtes rezeptives Feld besitzt, muss daher korrigiert werden. Zumindest bei VS-Zellen sollte bei solchen Aussagen in Zukunft zwischen dem Eingangs- und dem Ausgangsbereich der Zelle unterschieden werden. Diese räumliche Trennung innerhalb einer Nervenzelle war für die Forscher überraschend. Für die Fliege erweist sie sich jedoch als äußerst nützlich. Modell-Simulationen zeigten, dass ein Netzwerk sehr viel effizienter in der Bearbeitung von visuellen Bewegungsinformation ist, wenn es aus solchen "doppeltverschalteten" Zellen besteht.

Allmähliches Herantasten
"Dieses Ergebnis macht das Netzwerk der VS-Zellen zu einem der am besten verstandenen Schaltkreise des Nervensystems", fasst Alexander Borst die Arbeiten der letzen Jahre zusammen. Als nächstes wollen die Wissenschaftler nun untersuchen, ob eine Störung des VS-Netzwerks einen direkten Einfluss auf die Flugkünste der Fliege hat. "Denn wenn es darum geht, ein bestimmtes Verhalten zu beeinflussen, könnten bisher noch nicht berücksichtigte Zellen und Netzwerke an Bedeutung gewinnen", spekuliert Borst. Schritt um Schritt tasten sich die Forscher so an immer komplexere Netzwerke heran - damit wir eines Tages vielleicht auch die menschliche Sinnesverarbeitung auf der Ebene einzelner Nervenzellen verstehen.
Originalveröffentlichung:
Yishai M. Elyada, Jürgen Haag, Alexander Borst
Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons

Nature Neuroscience, 8. Februar 2009

Kontakt:
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
Email: merker@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/rd/scn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie