Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen sehen doppelt

09.02.2009
Im Vergleich zu vielen anderen Lebewesen sind Fliegen eher klein und ihr Gehirn ist recht übersichtlich. Allerdings kann die geringe Anzahl der Nervenzellen im Fliegenhirn zum Teil durch raffinierte Verschaltung kompensiert werden, fanden Wissenschaftler des Max-Planck-Instituts für Neurobiologie heraus.

Die Neurobiologen untersuchten spezielle Nervenzellen, die in ihrem Eingangsbereich Bewegungsreize aus einem schmalen Bereich des Sehfelds erhalten. Durch Verschaltung mit Nachbarzellen reagieren dieselben Zellen in ihrem Ausgangsbereich jedoch auf Bewegungen aus einem viel breiteren Sehbereich. Dies ermöglicht eine äußerst robuste Verarbeitung von optischen Informationen. (Nat Neurosci)


Arbeitsteilung im Flugkontrollzentrum: In ihrem Eingangsbereich (breites Zellende) erhält jede VS-Nervenzelle visuelle Informationen aus einen schmalen Streifen des Fliegenauges. Im Ausgangsbereich am hinteren Zellende, ermöglichen elektrische Querverbindungen (rot) den Austausch mit Nachbarzellen. Grafik: Max-Planck-Institut für Neurobiologie / Schorner

Kaum etwas ist komplexer als das menschliche Gehirn: Jede der rund hundert Milliarden Nervenzellen ist über viele tausend Kontaktstellen mit ihren Nachbarzellen verbunden. So entsteht ein vielschichtiges Netzwerk, in dem Informationen verarbeitet und gespeichert werden. Im Vergleich dazu erscheint das Gehirn einer Fliege eher simpel. Im Schmeißfliegen-Gehirn werden zum Beispiel Bewegungsinformationen von gerade einmal 60 Nervenzellen pro Hirnhälfte verarbeitet und die entsprechenden Befehle an die Flugsteuerung weitergegeben. Die eindrucksvolle Effizienz dieser 60 Zellen demonstriert die Fliege jedoch, wenn sie im rasanten Flug Hindernisse meidet und kopfüber an der Decke landet. Es ist daher kein Wunder, dass das Fliegenhirn Neurobiologen schon lange fasziniert.

Verteilung der Wenigen
Die vergleichsweise wenigen Nervenzellen im Flugkontrollzentrum der Fliege ermöglichen es, die Verschaltung und Funktion der beteiligten Zellen genauer zu untersuchen. Schnell hat sich dabei gezeigt, dass die 60 Nervenzellen noch einmal in einzelne Zellgruppen unterteilt sind, die jeweils für die Verarbeitung bestimmter Bewegungsmuster zuständig sind. Zum Beispiel reagieren die zehn sogenannten VS-Zellen auf Rotationsbewegungen der Fliege. Jede dieser Nervenzellen erhält ihre visuellen Informationen nur aus einem schmalen vertikalen Streifen des Fliegenauges, ihrem 'rezeptiven Feld'. Da die Zellen parallel zueinander angeordnet sind, decken diese vertikalen Streifen das gesamte Sehfeld der Fliege ab (exemplarisch zeigt die Abbildung drei der zehn VS-Zellen).
Komplexität durch Verschaltung
"Das wirklich Faszinierende an diesen VS-Zellen ist jedoch, dass das Netzwerk immer komplexer wurde, je genauer wir hinsahen", berichtet Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie das Bewegungssehen der Fliegen untersucht. Erst vor kurzem zeigte sein Mitarbeiter Jürgen Haag, dass VS-Zellen gleich auf zwei Ebenen verschaltet sind: In ihrem Eingangsbereich sammeln sie eingehende Informationen von Nervenzellen, die Bewegungsinformationen vom Auge erhalten. Unerwartet war jedoch, dass die Zellen zusätzlich in ihrem Ausgangsbereich über elektrische Verbindungen mit benachbarten VS-Zellen in Kontakt stehen. Computersimulationen dieser Verschaltung ließen Folgendes vermuten: Bekommt eine VS-Zelle Informationen aus "ihrem" rezeptiven Feld, vergleicht sie diese erst noch mit den Informationen ihrer Nachbarzellen. Erst dann wird die Information an nachgeschaltete Zellen für die Flugsteuerung weitergeleitet.
Dem Rätsel auf der Spur
Die logische Schlussfolgerung dieser Annahmen war eine kleine Sensation. Konnte es tatsächlich sein, dass eine einzelne Zelle zwei unterschiedliche rezeptive Felder besitzt - je nachdem, ob ihr Eingangs- oder ihr Ausgangsbereich betrachtet wird? Dieser Frage ging der Martinsrieder Neurobiologe Yishai Elyada nun auf den Grund. Mit einer Vielzahl von Methoden untersuchte er die Reaktionen der VS-Zellen auf Bewegungsreize. Der Durchbruch gelang, als der Wissenschaftler die Änderungen der zellinternen Kalziumkonzentrationen in einem speziellen Mikroskopierverfahren im wahrsten Sinne des Wortes unter die Lupe nahm. Die Kalziumkonzentration einer Nervenzelle ändert sich immer dann, wenn die Zelle aktiv ist. Eine Kalziumveränderung gibt daher preis, wann und wo eine Nervenzelle auf einen Reiz reagiert.

Um das rezeptive Feld einzelner VS-Zellen zu bestimmen, zeigte Elyada den Fliegen bewegte Streifenmuster. Die gleichzeitige Beobachtung der zellinternen Kalziumveränderungen bestätigte alle Vermutungen: VS-Zellen reagieren in ihrem Eingangsbereich tatsächlich nur auf Bewegungen aus einem schmalen Bereich des Sehfelds. Im Ausgangsbereich der Zelle reagieren sie dagegen zusätzlich auch auf Bewegungen in den rezeptiven Feldern der Nachbarzellen. Die gängige Aussage, dass eine Nervenzelle ein bestimmtes rezeptives Feld besitzt, muss daher korrigiert werden. Zumindest bei VS-Zellen sollte bei solchen Aussagen in Zukunft zwischen dem Eingangs- und dem Ausgangsbereich der Zelle unterschieden werden. Diese räumliche Trennung innerhalb einer Nervenzelle war für die Forscher überraschend. Für die Fliege erweist sie sich jedoch als äußerst nützlich. Modell-Simulationen zeigten, dass ein Netzwerk sehr viel effizienter in der Bearbeitung von visuellen Bewegungsinformation ist, wenn es aus solchen "doppeltverschalteten" Zellen besteht.

Allmähliches Herantasten
"Dieses Ergebnis macht das Netzwerk der VS-Zellen zu einem der am besten verstandenen Schaltkreise des Nervensystems", fasst Alexander Borst die Arbeiten der letzen Jahre zusammen. Als nächstes wollen die Wissenschaftler nun untersuchen, ob eine Störung des VS-Netzwerks einen direkten Einfluss auf die Flugkünste der Fliege hat. "Denn wenn es darum geht, ein bestimmtes Verhalten zu beeinflussen, könnten bisher noch nicht berücksichtigte Zellen und Netzwerke an Bedeutung gewinnen", spekuliert Borst. Schritt um Schritt tasten sich die Forscher so an immer komplexere Netzwerke heran - damit wir eines Tages vielleicht auch die menschliche Sinnesverarbeitung auf der Ebene einzelner Nervenzellen verstehen.
Originalveröffentlichung:
Yishai M. Elyada, Jürgen Haag, Alexander Borst
Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons

Nature Neuroscience, 8. Februar 2009

Kontakt:
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
Email: merker@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/rd/scn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie