Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen schützen sich kontrolliert vor freien Radikalen

07.09.2011
Rückkopplungsmechanismus koordiniert zelluläre Atmung und Abbau freier Sauerstoffradikale

Durch zelluläre Atmung, also die Umwandlung von Kohlenhydraten und Sauerstoff zu Kohlendioxid und Wasser, gewinnen sauerstoffverbrauchende Organismen Energie.

Dabei entstehen aber toxische Sauerstoffradikale, die sofort abgebaut werden müssen, da sie sonst die Zellen schädigen würden. Wissenschaftler des Max-Planck-Instituts für molekulare Genetik in Berlin haben jetzt einen Mechanismus entdeckt, mit dem Zellen die Atmungsaktivität und den Abbau freier Radikale koordinieren können. Zellen bereiten also ihren Stoffwechsel auf freie Radikale vor, bevor diese überhaupt entstehen.

Die zelluläre Atmung ist ein sehr effizienter Prozess, um aus wenigen Molekülen Zucker und Sauerstoff viel Energie zu gewinnen. Allerdings werden bis zu zwei Prozent des verbrauchten Sauerstoffs zu Superoxid umgewandelt, einem für Zellen toxischen, freien Radikal. Ein beachtlicher Teil dieses Superoxids entweicht der Atmungskette der Mitochondrien und stellt eine Gefahr für biologische Makromoleküle wie DNA, RNA, Proteine und Fettsäuren dar. Allerdings hat die Evolution eukaryontische Zellen mit umfangreichen Mechanismen ausgestattet, die diese in der Zelle entstehenden freie Radikale abbauen und so Schäden verhindern können. Diese Mechanismen arbeiten hoch effizient und gut koordiniert, so dass entgegen der landläufigen Meinung die Behandlung gesunden Gewebes mit Antioxidantien das natürliche Gleichgewicht stören und im schlimmsten Fall sogar Zellen schädigen und den Alterungsprozess beschleunigen kann.

Forscher am Max-Planck-Institut für molekulare Genetik haben nun atmende mit nicht atmenden Hefezellen verglichen. Wurde die Atmung aktiviert, stieg unmittelbar die Toleranz gegenüber oxidierenden Substanzen, jedoch nicht, wie erwartet, die Konzentration freier Radikale in der Zelle. Atmende Zellen waren also durchaus in der Lage, mit der erhöhten Bildung von freien Radikalen umzugehen und sie auf dem Niveau nicht-atmender Zellen zu halten.

Den Forschern zufolge ist eine bisher unentdeckte Rückkopplung innerhalb eines zentralen Stoffwechselweges für diesen Prozess verantwortlich. Das kohlenhydrat-abbauende Enzym Pyruvatkinase reguliert die Atmungsaktivität von Hefezellen. In atmenden Zellen ist es weniger aktiv, was zu einer Anreicherung seines Substrats Phosphoenolpyruvat führt. Die Akkumulation dieser Substanz hemmt ein anderes Enzym der Glykolyse, die Triosephosphat-Isomerase. Dieses Enzym ist den Forschern bestens bekannt - bereits früher hatten sie entdeckt, dass eine geringe Aktivität dieses Enzyms vor freien Radikalen schützt. „Wenn wir diesen Rückkopplungsmechanismus künstlich unterbinden und die Atmung aktivieren, steigt die freie Radikal-Konzentration in den atmenden Zellen stark an und schädigt Proteine und Mitochondrien. Zellen können also frühzeitig erkennen, wann eine erhöhte Radikal-Produktion auftreten wird und ihren Stoffwechsel schon anpassen, bevor es überhaupt zur Produktion der freien Radikale kommt“, erklärt Markus Ralser vom Max-Planck-Institut für molekulare Genetik.

Diese Entdeckung ist möglicherweise von besonderer Bedeutung für die Krebsforschung. Denn das Enzym Pyruvatkinase ist mit dafür verantwortlich, dass Tumorzellen meist weniger atmen und dafür mehr Zuckerstoffwechsel betreiben als gesundes Gewebe. Dieser Effekt ist nach Otto Warburg genannt, der in den 1920er Jahren erstmals einen erhöhten Zuckerstoffwechsel in Krebszellen nachweisen konnte. Die Forscher hoffen nun, dass der neu entdeckte Rückkoppelungsmechanismus benutzt werden kann, um in Tumorzellen einen gezielten Nährstoffmangel auszulösen und sie dadurch angreifbar zu machen.

Ansprechpartner
Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1716
Fax: +49 30 8413-1671
E-Mail: patricia.marquardt@molgen.mpg.de
Originalveröffentlichung
Nana-Maria Grüning, Mark Rinnerthaler, Katharina Bluemlein, Michael Mülleder, Mirjam MC, Wamelink, Hans Lehrach, Cornelis Jakobs, Michael Breitenbach and Markus Ralser
Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells

Cell Metabolism, September 7, 2011

Dr. Patricia Marquardt | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4411598/Zellen_Schutz_freien_Radikale

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie