Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen machen keinen Blödsinn

16.01.2012
Was muss passieren, damit Stammzellen sich zu reifen Zellen differenzieren?

Diese Frage beschäftigt Forscher weltweit. Wissenschaftler vom Biozentrum der Uni Würzburg haben jetzt wichtige Details des komplexen Geschehens aufgeklärt. Sie sind dabei auf eine neuartige Form der Genregulation gestoßen.

Neuronale Stammzellen tragen in ihrem Erbgut Informationen, die die Zellen benötigen, wenn sie sich zu reifen Nervenzellen entwickeln. Damit diese Gene aber nicht zum falschen Zeitpunkt aktiviert werden, sorgen andere Moleküle dafür, dass sie stillgelegt bleiben. Im Fall der neuronalen Stammzellen ist dies ein Proteinverband der als REST-Komplex bezeichnet wird.

Das Stilllegen kann auf unterschiedlichen Wegen geschehen: Zum einen kann die Zelle daran gehindert werden, die auf dem DNA-Strang vorliegende Information überhaupt abzulesen. Bei der zweiten Variante wird die Information zwar abgelesen und verlässt dann als so genannte mRNA den Zellkern. Bevor die Zelle jedoch damit ein Protein bauen kann, das den Differenzierungsvorgang reguliert, greift ein weiterer Akteur ins Geschehen ein und verhindert die Proteinsynthese – die so genannte microRNA.

Forschung am Lehrstuhl für Biochemie

Ob mRNAs, microRNAs oder andere Formen, die vielseitigen RNA-Moleküle stehen im Mittelpunkt der Forschung am Lehrstuhl für Biochemie der Universität Würzburg. Am Beispiel von Zebrafischen und Mauszellen untersuchen hier Professor Utz Fischer und seine Mitarbeiter die komplexen Vorgänge in den Zellen. Über das jüngste Ergebnis ihrer Arbeiten berichtet die Fachzeitschrift Genes & Development in ihrer aktuellen Ausgabe. Die Entdeckung war den Herausgebern sogar einen eigenen Übersichtsbericht wert.

Fischer und seine Mitarbeiter Holger Dill, Bastian Linder und Alexander Fehr haben untersucht, welche Vorgänge ablaufen, wenn sich die Stammzelle zur Nervenzelle umwandelt. Dafür muss zunächst der REST-Komplex in seiner Aktivität gehemmt werden. Nur dann kann die genetische Information, die für die Differenzierung benötigt wird, ausgelesen werden und den Vorgang starten. Die Wissenschaftler sind dabei auf einen Regelkreis gestoßen, an dem überraschend wenige Akteure beteiligt sind.

Ein Wechselspiel aus Aktivierung und Hemmung

In diesem Fall stößt nämlich das Gen im Erbgut der neuronalen Stammzelle einerseits die Umwandlung in eine Nervenzelle an, andererseits blockiert es diesen Prozess sofort wieder. Oder, wie Utz Fischer erklärt: „Das Gen, das für die Stilllegung der Differenzierung in neuronalen Stammzellen verantwortlich ist, kodiert sowohl die dafür notwendige mRNA als auch gleichzeitig eine microRNA der miR-26 Familie.“ Und diese microRNA blockiert just die parallel mit ihr gebildete mRNA.

„Das ergibt auf den ersten Blick keinen Sinn. Aber wir wissen ja, dass Zellen normalerweise keinen Blödsinn machen“, sagt Utz Fischer. Die Wissenschaftler haben sich deshalb auf die Suche nach weiteren Faktoren begeben, die diese Blockade regulieren können. Fündig wurden sie bei einem Mechanismus, der die Entstehung der aktiven miR-26 microRNA solange unterdrückt, bis diese von der Zelle benötigt werden.

Wieso muss eine Stammzelle eigentlich daran gehindert werden, sich in eine Nervenzelle umzuwandeln? Schließlich ist das doch ihr eigentliches Ziel. „Weil man dann nur wenige Nervenzellen hätte und nicht die benötigten mehreren zig Milliarden“, sagt Linder. Stammzellen müssen sich also teilen und vermehren, bevor sie sich differenzieren. Das können sie allerdings nur, solange der Umwandlungsprozess blockiert ist.

Vielversprechender Ansatz für die Krebstherapie

Die Tatsache, dass die miR-26 microRNA Zellen zur Differenzierung anregt und somit den Teilungsprozess stoppt, ist auch aus medizinischer Sicht interessant – beispielsweise für eine potenzielle Krebstherapie. Schließlich ist die ungebremste Zellteilung das Hauptmerkmal von Krebs. Tatsächlich hat eine andere Forschergruppe von der Johns Hopkins Universität in Baltimore vor Kurzem auf diesem Gebiet einen vielversprechenden Erfolg verbucht: Sie konnte bei Mäusen mit einer bestimmten Form von Leberkrebs durch die Gabe von miR-26 microRNA das Tumorwachstum stoppen.

Das ist allerdings nicht die Richtung, in die Fischer und sein Team forschen. Sie betrachten ihre Arbeit eher als Grundlagenforschung: „Uns geht es darum, das Netzwerk der Regulation in einer Zelle und die zu Grunde liegenden Mechanismen zu verstehen“, sagt Linder. Und das sei mit der jüngsten Publikation perfekt gelungen: „Es wurde schon seit Längerem vorhergesagt, dass es Regelkreise geben muss, bei denen sich Gene quasi selbst hemmen. Wir konnten sie jetzt im lebenden Organismus nachweisen.“

Beendet ist die Suche damit noch lange nicht. „Es muss andere Faktoren geben, die die Bildung der aktiven microRNA regulieren“, sagt Linder. Die zu kennen, wäre „ein wichtiger Fortschritt“.

“Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2”, Holger Dill, Bastian Linder, Alexander Fehr and Utz Fischer. Genes & Development; doi:10.1101/gad.177774.111

„The enemy within: intronic miR-26b represses its host gene, ctdsp2, to regulate neurogenesis” Jinju Han, Ahmet M. Denli and Fred H. Cage. Genes & Development; doi:10.1101/gad.184416.111

Kontakt

Prof. Dr. Utz Fischer, T: (0931) 31-84029, E-Mail: utz.fischer@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften