Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen beschleunigen Freisetzung von HIV

19.12.2008
Zellaustritt von HI-Viren erstmals dreidimensional auf Nanoebene dargestellt / Heidelberger und Münchner Wissenschaftler veröffentlichen in "Cell Host & Microbe"

HI-Viren befallen Immunzellen, um sich im menschlichen Körper zu vermehren. Doch wie kommen die neu gebildeten Viren aus der Wirtszelle raus? Und welche Rolle spielt die Zelle selbst dabei?

Diesen Fragen gehen Wissenschaftler des Hygiene-Instituts am Universitätsklinikum Heidelberg gemeinsam mit Kooperationspartnern vom Max Planck Institut für Biochemie in Martinsried mit Hilfe eines neuen hochauflösenden Verfahrens, der Kryo-Elektronentomographie, auf den Grund. Die ersten dreidimensionalen Bilder im Nanometerbereich zeigen: Die Wirtszelle selbst ist an der Freisetzung des AIDS-Erregers früher beteiligt und spielt vermutlich eine wichtigere Rolle als bisher angenommen.

Die Ergebnisse tragen dazu bei, die komplizierten Wechselwirkungen zwischen Zelle und Virus zu verstehen - ein wichtiger Ansatzpunkt für zukünftige Therapien gegen AIDS. "Wenn wir bereits innerhalb der Wirtszelle die Virusbildung stören, also in einem sehr frühen Stadium angreifen, dann ist das Virus möglicherweise empfindlicher", erklärt Professor Dr. Hans-Georg Kräusslich, Geschäftsführender Direktor des Hygiene-Instituts und Seniorautor der wissenschaftlichen Arbeit, die im Dezember 2008 in der Fachzeitschrift "Cell Host & Microbe" veröffentlicht wurde.

Zelle kappt Verbindung zu Viruskapsel

Befallen HI-Viren Zellen des Immunsystems, programmieren sie diese auf "Virusvermehrung" um. Dazu schleusen sie ihr Erbgut mit allen notwendigen Informationen in die Zelle ein: Von nun an vervielfältigen die Zellen das Erbgut des AIDS-Erregers und produzieren die Bausteine der Virushülle. Schließlich verlassen die neu gebildeten Viren als kugelförmige Kapsel die Zelle. Dabei kappen zelleigene Proteine - der so genannte Proteinkomplex ESCRT (sprich: escort) - die Verbindung zwischen Viruskapsel und Zelloberfläche. "Unsere Aufnahmen mit der Kryo-Elektronentomographie zeigen, dass die Kapseln erst zu ca. 60 Prozent fertig gestellt sind, wenn die Viren abgeschnürt werden", erklärt Professor Kräusslich. Die ESCRT-Proteine greifen also offenbar schon in einem frühen Stadium der Partikelbildung ein. Eine Schwachstelle ist die scheinbar unvollständige Hülle des Virus nicht: Ist das Virus freigesetzt, ordnen sich die vorhandenen Proteine zu einem vollständigen konusförmigen Kapsid um.

Kryo-Elektronentomographie erlaubt spektakuläre Momentaufnahmen

Momentaufnahmen dieser molekularen Vorgängen sind in dieser Form nur mit der Kryo-Elektronentomographie möglich: Durch das blitzartige Einfrieren auf minus 196 Grad Celsius bleibt die räumliche Struktur und Anordnung aller Zellbestandteile vollständig erhalten. Die Untersuchungsobjekte bleiben unverfälscht - chemische Vorbehandlungen, Anfärben oder Dünnschnitte sind nicht notwendig. Im Elektronenmikroskop wird das Objekt aus verschiedenen Richtungen durchstrahlt; ein dreidimensionales Struktur-Modell mit einer Auflösung von wenigen Nanometern, also Millionstel Millimetern, entsteht. Die Kryo-Elektronentomographie für diese Arbeit wurde unter der Leitung von Dr. Kay Grünewald vom Max Planck Institut für Biochemie in Martinsried durchgeführt.

Literatur:
Lars-Anders Carlson, John A.G. Briggs, Bärbel Glass, James D. Riches, Martha N. Simon, Marc C. Johnson, Barbara Müller, Kay Grünewald, Hans-Georg Kräusslich: Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis. Cell Host & Microbe. Volume 4, Issue 6, 11 December 2008, Pages 592-599 . doi:10.1016/j.chom.2008.10.013
Ansprechpartner:
Hans-Georg Kräusslich
Abteilung Virologie
Universität Heidelberg
Im Neuenheimer Feld 324
Tel: +49 (0)6221 56-5001
E-Mail: Hans-Georg_Kraeusslich@med.uni-heidelberg.de
www.klinikum.uni-heidelberg.de/virologie
Universitätsklinikum und Medizinische Fakultät Heidelberg:
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 7.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 40 Kliniken und Fachabteilungen mit 1.600 Betten werden jährlich rund 860.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.100 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. (Stand 12/2008)
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/presse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten