Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen ankleben

16.11.2011
Hybrid aus Nanofasern und Muschel-Adhäsionsprotein als Substrat für die Gewebekultur
Nicht nur was in Körperzellen drin ist, auch das Drumherum zählt: So spielt die extrazelluläre Matrix etwa eine wichtige Rolle für Bindegewebe und Knorpel sowie für das Wachstum und die Regeneration von Knochen. Auch wenn man Gewebe im Labor züchten will, etwa um einen beschädigten Knochen zu reparieren, wird ein Gerüst gebraucht, das der natürlichen extrazellulären Matrix nachempfunden ist.

(c) Wiley-VCH

Ein Team um Hyung Joon Cha von der Pohang University of Science and Technology (Südkorea) stellt in der Zeitschrift Angewandte Chemie nun neuartiges Substrat vor: Ein Hybrid aus synthetischen Nanofasern und einem „Klebstoff“ aus marinen Muscheln, an das Zellen einfach „angeklebt“ werden.

Die Faserstruktur der extrazellulären Matrix nachzuahmen ist wichtig, reicht aber nicht, um Zellen zum Anwachsen zu animieren. Die Fasern müssen eine Oberfläche mit der richtigen biologischen Funktionalität bieten. Dazu werden meist Biomoleküle der extrazellulären Matrix an synthetische Nanofasern geknüpft – in teilweise sehr komplizierten Prozeduren. Eine einfache, universelle Technik wäre wünschenswert. Und dies scheint dem koreanischen Team jetzt gelungen – dank eines speziellen Muschel-„Klebers“.

Meeres-Muscheln sondern ein Adhäsionsprotein ab, um sich im Wasser an Oberflächen zu heften. Dieser Klebstoff fixiert sie zuverlässig auf fast allen Materialien wie Steinen, anderen Muscheln, Holzstegen oder dem Metall von Schiffsrümpfen. Ein idealer Universalkleber also. Inzwischen ist es gelungen, ein Fusionsprotein des Muschelklebers gentechnisch von Bakterien in großen Mengen herstellen zu lassen.

Die koreanischen Forscher konnten diesen Muschelkleber mit einem Elektrospinnverfahrens zu Nanofasern spinnen, die aber nicht fest genug als Substrat für eine Zellkultur waren. Im richtigen Mischungsverhältnis zusammen mit einem biokompatiblen synthetischem Polymer versponnen, entstehen aber Fasern mit guten mechanischen Eigenschaften. Das synthetische Polymer bildet dabei das Rückgrat der Faser, der Muschelkleber heftet sich auf die Nanofasern und macht ihre Oberflächen „klebrig“. Biomoleküle wie Proteine, DNA und Kohlenhydrate haften fest daran und bilden eine gleichmäßige Beschichtung – es genügt, die Fasern in die entsprechende Lösung einzutauchen.

Auch Zellen haften ausgezeichnet an dem faserigen Substrat, wie Versuche mit Vorläufern knochenbildender Zellen zeigten. Die Zellen lagern sich an die Muschelkleber-Polymer-Nanofasern an, breiten sich aus und vermehren sich. Noch besser funktionierte dies, wenn das Muschelkleber-Fusionsprotein zusätzlich eine spezielle Zellerkennungssequenz enthielt. Die neuartigen Muschelkleber-haltigen Nanofasern sind damit ein sehr interessantes Substrat für Anwendungen in der Gewebezüchtung.

Angewandte Chemie: Presseinfo 44/2011

Autor: Hyung Joon Cha, Pohang University of Science and Technology (Rep. Korea), http://magic.postech.ac.kr/member/professor.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201105789

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten