Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich die Zelle bei der Zellkernteilung umformt

12.02.2013
Heidelberger Forscher untersuchen zeitlich begrenzten Abbau eines Aktin-Regulators

Neue Erkenntnisse zum Prozess der Zellkernteilung in Säugerzellen haben Wissenschaftler des Zentrums für Molekulare Biologie der Universität Heidelberg gewonnen.


Immunfluoreszenzmarkierung einer Zelle in der frühen Mitose mit normaler (rechts) und erhöhter Eps8-Menge (links). In grün ist das Aktinzytoskelett, in rot DNA und in blau ein spezifischer Mitosemarker dargestellt.

Bildnachweis: Dr. Achim Werner

Die Forscher unter Leitung von Prof. Dr. Frauke Melchior konnten gemeinsam mit Kollegen aus Göttingen, Mailand und Memphis einen bislang unbekannten Mechanismus entschlüsseln, der bei der Umformung der Zelle während der Mitose eine wichtige Rolle spielt. Untersucht wurde der zeitlich begrenzte Abbau eines Proteins, das bestimmte Strukturen des mechanischen Aufbaus der Zelle, dem Aktinzytoskelett, reguliert. Die Forschungsergebnisse zu diesem Aktin-Regulator wurden in der Fachzeitschrift „Nature Cell Biology“ veröffentlicht.

Die gleichmäßige Verteilung von Chromosomen auf zwei Tochterzellen in der Mitosephase des Zellzyklus ist ein vielstufiger und exakt kontrollierter Prozess: Nach der Auflösung des Zellkerns und dem Aufbau der mitotischen Spindel folgen das Auseinanderziehen der Chromosomen in Richtung der Spindelpole, die Bildung von zwei Zellkernen und die Teilung der Zelle in zwei Tochterzellen. Nach den Worten von Prof. Melchior ist seit langem bekannt, dass das Aktinzytoskelett der Zelle – dies sind aus dem Strukturprotein Aktin bestehende fadenförmige Zellstrukturen – ebenfalls ein wichtiger, regulierender Teil dieses Prozesses ist.

Durch dynamische Veränderungen vor, während und nach der Mitosephase schafft es mechanische Voraussetzungen dafür, dass die Chromosomen symmetrisch aufgeteilt und damit die Erbinformationen gleich auf beide neugebildeten Tochterzellen verteilt werden. „Warum und wie sich das Aktinnetzwerk der Zelle besonders in den frühen Stadien der Mitose ändert, ist bis heute allerdings kaum verstanden. Dazu gehört insbesondere auch die Frage, wie sich Zellen mit dem Eintritt in Zellteilung abrunden und mit dem Austritt aus der Zellteilung wieder abflachen“, erläutert Dr. Achim Werner, der in der Gruppe von Prof. Melchior maßgeblich an den Forschungsarbeiten beteiligt war.

Die Heidelberger Wissenschaftler konnten jetzt zeigen, dass der zeitlich begrenzte Abbau eines Aktin-Regulators im Zytoskelett der Zelle – er trägt die Bezeichnung Eps8 – eine wichtige Rolle in der Mitosephase spielt. Die Degradation von Eps8, das ein nur scheinbar „stabiles“ Protein ist, wird dabei durch eine bislang wenig bekannte Ubiquitin-E3-Ligase vermittelt. „Schaltet man diesen Degradationsmechanismus aus, kommt es zu einer verzögerten Zellabrundung und einer Verlangsamung der frühen Phasen der Mitose. Ist aber zu wenig Eps8 während der späten Mitosephase vorhanden, treten dramatische Verformungen der Zellen auf“, erklärt Dr. Werner. Die genaue Kontrolle der Menge an Eps8 trägt damit zu den strukturellen Änderungen bei, die eukaryotische Zellen durchlaufen müssen, um ihre Erbinformationen korrekt auf zwei Tochterzellen zu verteilen. „Unsere Arbeiten zeigen einmal mehr, dass die kontrollierte Proteindegradation einen entscheidenden Anteil an der Steuerung zellulärer Prozesse hat“, erläutert Prof. Melchior.

Die Forschungsarbeiten waren Teil der DKFZ-ZMBH-Allianz, der strategischen Zusammenarbeit zwischen dem Deutschen Krebsforschungszentrum (DKFZ) und dem Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH). Mitgewirkt haben daran auch Forscher des Max-Planck-Instituts für biophysikalische Chemie in Göttingen und des Universitätsklinikums Göttingen, des FIRC Institute of Molecular Oncology (IFOM) in Mailand und der Universität Mailand sowie des Howard Hughes Medical Institute – St. Jude Children’s Research Hospital – in Memphis.
Originalveröffentlichung:
A. Werner, A. Disanza, N. Reifenberger, G. Habeck, J. Becker, M. Calabrese, H. Urlaub, H. Lorenz, B. Schulman, G. Scita & F. Melchior: SCF-Fbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression, Nature Cell Biology (published online 13 January 2013), doi:10.1038/ncb2661

Kontakt:
Prof. Dr. Frauke Melchior
Zentrum für Molekulare Biologie der Universität Heidelberg
Telefon (06221) 54-6804
f.melchior@zmbh.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Herkunft von zentralen Immunzellen an Hirngefäßen aufgeklärt
04.05.2016 | Universitätsklinikum Freiburg

nachricht Dreifaches Leuchten gegen Geldfälschung und Produktpiraterie
04.05.2016 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

2012 war es die Venus, in diesem Jahr ist der Planet Merkur dran, vor der Sonne zu passieren. Für fast acht Stunden werden wir am 9. Mai 2016 die Möglichkeit haben, den Planeten Merkur als kleinen schwarzen Punkt auf der Oberfläche der Sonne durchziehen zu sehen. Das EU-Projekt STARS4ALL, an dem auch das IGB beteiligt ist, wird in Zusammenarbeit mit www.sky-live.tv das Phänomen von Teneriffa und von Island aus live übertragen. STARS4ALL bietet dazu Bildungsmaterial für Schüler an.

Am 9. Mai 2016, um die Mittagszeit, wird der Planet Merkur anfangen, die Scheibe der Sonne zu kreuzen; eine Reise, welche über sieben Stunden dauern wird.

Im Focus: MICROSCOPE sendet

Am Montag, 2. Mai 2016, erreichte die Wissenschaftlerinnen und Wissenschaftler vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen die erste Erfolgsmeldung von ihrem Forschungs-Satelliten. Per Videoübertragung waren sie zugeschaltet, als die französischen Kollegen das Experiment an Bord von MICROSCOPE (MICRO Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence) initialisierten und das Messinstrument die ersten Testdaten übermittelte. Damit ist der wichtigste Meilenstein der Testphase erreicht, bevor sich herausstellt, ob Einsteins Relativitätstheorie auch nach dieser Satellitenmission noch Bestand haben wird.

“#TSAGE @onera_fr is on. The test masses have been released and servo looped!!!! Great all green“ lautet die Twitter-Nachricht der französischen Partner, die...

Im Focus: Genauester Spiegel der Welt bei European XFEL in Hamburg eingetroffen

Der vermutlich präziseste Spiegel der Welt ist bei European XFEL in der Metropolregion Hamburg eingetroffen. Der 95 Zentimeter lange Spiegel ist ein wichtiges Bauteil des Röntgenlasers, der 2017 in Betrieb gehen soll. Auf den ersten Blick sieht er einem normalen Spiegel durchaus ähnlich, ist jedoch extrem flach und glatt. Die größten Unebenheiten auf seiner Oberfläche haben eine Dimension von gerade einmal einem Nanometer, einem milliardstel Meter. Diese Präzision entspräche einer 40 Kilometer langen Straße, deren maximale Unebenheit gerade einmal so groß ist wie der Durchmesser eines Haars.

Der Röntgenspiegel ist der erste von mehreren, die an unterschiedlichen Stellen der Anlage zum Spiegeln und Filtern des Röntgenlaserstrahls eingebaut werden....

Im Focus: Erste Filmaufnahmen von Kernporen

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze...

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress in Berlin beginnt heute

04.05.2016 | Veranstaltungen

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungen

analytica conference 2016 in München - Foodomics, mehr als nur ein Modebegriff?

03.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beim Laden von Lithium-Luft-Akkus entsteht hochreaktiver Singulett-Sauerstoff

04.05.2016 | Energie und Elektrotechnik

Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

04.05.2016 | Physik Astronomie

Mehr als eine mechanische Barriere - Epithelzellen kämpfen aktiv gegen das Grippevirus

04.05.2016 | Biowissenschaften Chemie