Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Zelle nicht die Fäden verliert

03.06.2013
Bevor Ei- und Samenzelle sich vereinen und daraus neues Leben entsteht, müssen sie ihren Chromosomensatz halbieren.

Werden Chromosomen dabei zu früh getrennt oder ungleich auf die Tochterzellen verteilt, drohen Chromosomenanomalien wie das Down-, Klinefelter- oder Turner-Syndrom. Wissenschaftler am Max-Planck-Institut für biophysikalische Chemie in Göttingen haben jetzt am Modell des Krallenfrosches aufgeklärt, wie die Zelle die präzise Verteilung der Chromosomen mithilfe eines kleinen molekularen Motorproteins namens NabKin sicherstellt. (EMBO Journal, 31. Mai 2013)


Chromosomen im Zellkern einer Eizelle des Afrikanischen Krallenfrosches während der Meiose. Zusammengehörige Chromosomen sind, wie für die Meiose typisch, an Kreuzungspunkten miteinander verknüpft. Die Färbung stellt die Tiefe im Zellkern dar. Matthias Samwer, Max-Planck-Institut für biophysikalische Chemie

Trisomie21 – auch bekannt als Down-Syndrom – ist der häufigste Chromosomenfehler bei Neugeborenen. In Deutschland leben rund 50 000 Betroffene; sie haben das Chromosom 21 dreifach statt doppelt. Auch Geschlechts-Chromosomen können in ihrer Anzahl variieren – mit fatalen Folgen. Männer, die ein zusätzliches X-Chromosom besitzen, leiden unter dem Klinefelter- Syndrom. Frauen, die eines zu wenig haben, erkranken am Turner-Syndrom. Je nach Form und Ausprägung sind die Betroffenen in ihrer geistigen Entwicklung verlangsamt. Sie leiden unter verschiedenen Fehlbildungen und ihre Lebenserwartung ist geringer.

Aber nicht nur einzelne Chromosomen können in der Anzahl variieren, auch der gesamte Chromosomensatz kann in mehrfacher Kopie vorliegen. Wissenschaftler bezeichnen dies als Polyploidie. In solchen Fällen kommt es nach der Befruchtung bereits im frühen Stadium zu einer Fehlgeburt. Forscher am Max- Planck-Institut für biophysikalische Chemie haben jetzt am Modell des Afrikanischen Krallenfrosches (Xenopus laevis) aufgeklärt, wie ein neues Motorprotein namens NabKin solche Polyploidie während der Zellteilung verhindert.

Chromosomenanomalien entstehen, wenn Zellen sich fehlerhaft teilen. Wenn Ei- und Samenzellen im Laufe der sogenannten Reifeteilung (Meiose) ihren Chromosomensatz halbieren, erfolgt dies nach strenger Choreografie. Zunächst müssen sich die in den Keimzellen vorhandenen Chromosomenpaare gegenseitig erkennen und verbinden. Dabei wird genetisches Material ausgetauscht. Danach weichen die Chromosomen auseinander, die Zelle teilt sich. In der zweiten Reifeteilung trennen sich Chromosomen nochmals in ihre beiden Spalthäften (die Chromatiden), gefolgt von einer weiteren Zellteilung. Vier Tochterzellen mit einfachem Chromosomensatz – genetisch alle unterschiedlich – sind das Ergebnis dieses hochkomplexen, streng regulierten Prozesses. Maßgeblich daran beteiligt ist das Zytoskelett der Zelle. Diese zellulären „Verkehrsnetze“ bestehen aus langen Proteinsträngen von Aktinfilamenten und Mikrotubuli, die sich wie Eisenbahnschienen ihren Weg durch das Zellinnere bahnen. Über diese Schienen wird mithilfe von Motorproteinen auch der zelluläre Lastverkehr abgewickelt.

Motorproteine übernehmen ebenfalls eine fundamentale Rolle bei der Zellteilung. Dirk Görlich, Leiter der Abteilung „Zelluläre Logistik“, hat jetzt mit seinem Team gezeigt, wie das NabKin-Motorprotein in Krallenfrosch-Eizellen dafür sorgt, dass jeweils ein vollständiger Chromosomensatz auf die Tochterzellen verteilt wird. „Zu unserer großen Verblüffung machte NabKin für ein Motorprotein etwas äußerst Ungewöhnliches“, erinnert sich Görlich. Er erklärt: „NabKin nutzt beide Verkehrssysteme der Zelle. Es bindet sowohl an Aktinfilamente als auch an Mikrotubuli. Wir vermuten, dass es beide Schienensysteme miteinander verknüpft und dafür sorgt, dass sie während der Zellteilung koordiniert zusammenarbeiten.“ Hemmten die Wissenschaftler während der Meiose die Bindung von NabKin an Aktinfilamente, verlief die Zellteilung fehlerhaft, mehrfache Chromosomensätze in der Eizelle waren die Folge.

Pilz-Gift im Einsatz für die Forschung

Auf die Spur des NabKin-Motorproteins brachte Görlichs Team ein Gift, das unerfahrene Pilzsucher fürchten: Phalloidin, eines der Toxine aus dem Grünen Knollenblätterpilz (Amanita phalloides). Es greift Aktinfilamente an und bindet diese äußerst stark. Forscher machen sich dies bereits seit Längerem zunutze, um Aktinfilamente in lebenden Zellen sichtbar zu machen. Matthias Samwer, Doktorand in der Abteilung „Zelluläre Logistik“, entwickelte mithilfe von Phalloidin eine neue, äußerst sensitive Methode, mit der sich Aktin-bindende Proteine aufspüren und identifizieren lassen. Zellkerne aus Eizellen des Afrikanischen Krallenfrosches erwiesen sich dabei als ideales Forschungsobjekt. In molekularen Dimensionen sind diese Zellkerne riesig. Sie besitzen ein 100 000 mal größeres Volumen als die Zellkerne unserer Körperzellen. Die Giganten unter den Eizellen müssen daher durch ein Kernskelett aus Aktin mechanisch stabilisiert werden.

„Ein solches Skelett im Inneren eines Zellkerns ist eine äußerst ungewöhnliche Struktur. Wie es aufgebaut und organisiert wird, darüber wusste man zu Beginn unserer Studie kaum etwas“, erläutert Biologe Samwer. Das Aktin-Kernskelett war der Ausgangspunkt der Göttinger Wissenschaftler, um mit ihrer neuen Methode bisher unbekannte Bindungspartner von Aktin aufzuspüren. „Um aufzuklären, um welche Proteine es sich dabei handelt, haben wir die Massenspektrometrie eingesetzt. NabKin war der prominenteste neue Kandidat, den wir dabei entdeckt haben“, sagt Henning Urlaub, Leiter der Forschungsgruppe „Bioanalytische Massenspektrometrie“.

Ein enger Verwandter von NabKin, KIF14 genannt, kommt auch in den Zellen des Menschen vor. Auch KIF14 ist für die Zellteilung unentbehrlich: Über dieselben Mechanismen scheint es dafür zu sorgen, dass der Chromosomensatz präzise verteilt wird. „Wenn wir im Detail wissen, wie Eizellen sich teilen und welche Faktoren dabei eine Rolle spielen, können wir auch etwas darüber lernen, wie Chromosomenanomalien entstehen und diese möglicherweise verhindert werden können“, hofft Görlich.

Originalpublikation:
Matthias Samwer, Heinz-Jürgen Dehne, Felix Spira, Martin Kollmar, Daniel W. Gerlich, Henning Urlaub, Dirk Görlich: The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis. EMBO Journal, 31. Mai 2013, doi: 10.1038/emboj.2013.108

Kontakt:
Prof. Dr. Dirk Görlich, Abteilung „Zelluläre Logistik“
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-2400
E-Mail: dgoerli@gwdg.de

Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.gwdg.de
http://www.mpibpc.mpg.de/de/goerlich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise