Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zell-Stress erhöht die Produktivität

02.07.2012
An der TU Wien wurde eine Methode entwickelt, in kürzerer Zeit mehr Information als bisher über den Stoffwechsel von Mikroorganismen herauszufinden, um damit ihre Produktivität zu steigern.

Ein bisschen Stress kann die Produktivität erhöhen – das ist keine Erkenntnis aus der modernen Arbeitswelt, sondern aus dem Labor des Instituts für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften der TU Wien.


Hefezellen
TU Wien

Wenn man Mikroorganismen (etwa Hefepilze) einsetzen will, um gezielt Biomoleküle herzustellen, muss man zunächst in langwierigen Versuchen die optimale chemische und physiologische Umgebung dafür finden. Im Gegensatz zur konventionellen Tests setzt man an der TU Wien die Mikroorganismen gezielt zeitlich veränderlichen, dynamischen Bedingungen aus, um in kürzerer Zeit mehr über ihren Stoffwechsel zu erfahren. Erstaunlicherweise wird genau durch den dadurch erzeugten Stress die Effizienz der Mikroorganismen deutlich gesteigert.

Mikroorganismen als lebende Chemiefabriken

Pilze oder Bakterien zur Herstellung von bestimmten wertvollen Stoffen einzusetzen ist heute ganz alltäglich. In der pharmazeutischen Industrie werden häufig genmanipulierte Organismen verwendet, etwa um Proteine und Enzyme zu erzeugen. Einen solchen Prozess aufzusetzen und zu optimieren ist jedoch recht aufwendig: Welchen Pilz- oder Bakterienstamm soll man verwenden? Wie müssen die Umgebungsbedingungen sowie die Kontrollstrategien ausgelegt sein, damit die Mikroorganismen möglichst effizient arbeiten? „Bisher musste man all das in vielen einzelnen Versuchen ausprobieren, von denen jeder einzelne viele Tage oder Wochen dauern kann“, sagt Oliver Spadiut (TU Wien).

Daher machte man sich in an der TU Wien auf die Suche nach besseren Alternativen. Anstatt eine Kultur in einem konstanten Gleichgewichtszustand zu beobachten, führt man ihr immer wieder in kurzen Pulsen unterschiedliche Mengen bestimmter Stoffe zu. „Wir beobachten dann die zeitabhängige Reaktion der Kultur auf diese gepulsten Veränderungen“, erklärt Christian Dietzsch, der im Rahmen dieses Projektes seine Dissertation verfasste.

Zeitliche Änderung bringt nützlichen Stress

Während dieser Charakterisierungs-Experimente wurde eine erstaunliche Entdeckung gemacht: genau diese zeitlichen, dynamischen Veränderungen von Prozessbedingungen erwiesen sich als positiv für die Produktivität der Zellen. „Abrupte Änderungen der physiologischen Bedingungen setzen die Zellen unter Stress, und eigentlich hätte man eher vermuten können, dass Stress schädlich für die Zellen ist“, sagt Oliver Spadiut. „Doch genau dieser Stress lässt die Mikroorganismen effektiver arbeiten. In einer dynamisch veränderten Umgebung produzieren sie mehr als in einem konstanten Gleichgewichtszustand.“

„Unsere Taktik, die chemische Zusammensetzung immer wieder gezielt zu ändern hat also zwei wesentliche Vorteile“, erklärt Professor Christoph Herwig, Leiter der Forschungsgruppe Bioverfahrenstechnik. „Wir können in kürzerer Zeit mehr Information gewinnen als bisher – und gleichzeitig erhöhen wir genau durch diese Dynamik auch die Produktivität.“

Medizin bis Alternativenergie

In Rahmen dieses Forschungsprojektes wurde mit Pichia pastoris gearbeitet – einem Hefepilz, mit dem man wertvolle Enzyme herstellen kann, unter anderem für gezielte Krebstherapie. „Das Anwendungsgebiet der neuen Methode ist aber viel breiter“, betont Christoph Herwig. „In unserer Arbeitsgruppe entwickeln wir Methoden, die generisch anwendbar sind. Unsere dynamische Strategie ist sowohl für mikrobielle als auch für tierische Zellen, für die man die optimalen Umgebungsbedingungen schaffen will, anwendbar. Dadurch erspart man sich nicht nur wochenlange, mühevolle Versuchsreihen, sondern auch die dadurch entstehenden Kosten.“ Wichtige Einsatzgebiete gibt es im Bereich Energie und Umwelt (einer der Forschungsschwerpunkte der TU Wien) – etwa die Methanproduktion aus Biomasse. „Von der pharmazeutischen Industrie bis zu erneuerbarer Energie – mit unserer Taktik zur Bioprozess-Optimierung werden in vielen Bereichen deutliche Verbesserungen möglich“, ist Christoph Herwig sicher.

Rückfragehinweise:

Dr. Oliver Spadiut
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften
Technische Universität Wien
Gumpendorfer Straße 1a, 1060 Wien
T: +43-1-58801-166473
oliver.spadiut@tuwien.ac.at
Univ. Prof. Christoph Herwig
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften
Technische Universität Wien
Gumpendorfer Straße 1a, 1060 Wien
T: +43-1-58801-166400
oliver.spadiut@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/zell_stress/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie